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1 Introduction

The American writer Kurt Vonnegut began his career in the public relations division

of General Electric. One day, he saw a new milling machine operated by a punch-

card computer outperform the company’s best machinists. This experience inspired

him to write a novel called “Player Piano.” It describes a world in which school chil-

dren take a test at an early age that determines their fate. Those who pass, become

engineers and design robots used in production. Those who fail, have no jobs and

live from government transfers. Are we converging to this dystopian world? How

should public policy respond to the impact of automation on the demand for labor?

These questions have been debated ever since 19th-century textile workers in the

U.K. smashed the machines that eliminated their jobs. As the pace of automation

quickens and affects a wide range of economic activities, Bill Gates re-ignited this

debate by proposing that robots should be taxed. Policies that address the impact

of automation on the labor market have been discussed in the European Parliament

and have been implemented in South Korea.

In this paper, we use a simple model of automation to compare the equilibrium

that emerges under the current U.S. tax system (which we call the status quo), the

first-best solution to a planner’s problem without information constraints, and the

second-best solutions associated with different configurations of the tax system.

Our model has two types of workers which we call routine and non-routine. Rou-

tine workers perform tasks that can be automated by using intermediate inputs that

we refer to as robots.1 We find that robot taxes are optimal as long as there is par-

tial automation. These taxes increase the wages of routine workers, and decrease

those of non-routine workers, giving the government an additional instrument to

reduce income inequality. With full automation, it is not optimal to tax robots. Rou-

1See Acemoglu and Autor (2011) and Cortes, Jaimovich and Siu (2017) for a discussion of the
impact of automation on the labor market for routine workers.
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tine workers no longer work, so taxing robots distorts production decisions without

reducing income inequality.2

We model the current U.S. tax system using the after-tax income function pro-

posed by Feldstein (1969), Persson (1983), and Benabou (2000) and estimated by

Heathcote, Storesletten and Violante (2017). With this tax system, as the cost of au-

tomation falls, the wages of non-routine workers rise while the wages of routine

workers fall to make them competitive with robot use. The result is a large rise in

income inequality and a substantial decline in the welfare of routine workers.

The level of social welfare obtained in the status quo is much worse than that

achieved in the first-best solution to an utilitarian social planner problem without

information constraints. But this first-best solution cannot be implemented when

the government does not observe the worker type. The reason is that the two types

of workers receive the same level of consumption but non-routine workers supply

more labor than routine workers. As a result, non-routine workers have an incen-

tive to act as routine workers and receive their bundle of consumption and hours

worked.

To circumvent this problem, we solve for the optimal tax system imposing, as in

Mirrlees (1971), the constraint that the government does not observe the worker type

or the workers’ labor input. The government can observe total income and consump-

tion of the two types of workers, as well as the use of robots by firms. We assume that

taxes on robots are linear for the reasons emphasized in Guesnerie (1995): non-linear

taxes on intermediate inputs are difficult to implement in practice because they cre-

ate arbitrage opportunities. A Mirrleesian optimal tax system can improve welfare

relative to the status quo. In fact, it can yield a level of welfare that is close to that of

2These results show that the reason why it can be optimal to tax robots in our model differs from
the rationale used by Bill Gates to motivate robot taxation. Gates argued that robots should be taxed
to replace the tax revenue that the government collected from routine workers before their jobs were
automated. In our model, when there is full automation the government collects no tax revenue from
routine workers yet it is optimal not to tax robots.
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the first-best allocation.

We also study the optimal policy when the tax schedule is constrained to take a

simple, exogenous form. We consider the income tax schedule proposed by Heath-

cote, Storesletten and Violante (2017) and linear robot taxes. We compute the param-

eters of the income tax function and the robot tax rate that maximize social welfare.

We find that income inequality can be reduced by raising marginal tax rates and tax-

ing robots. Tax rates on robot use can be as high as 30 percent. Routine workers

supply a constant number of hours over time even though their wages fall. This

solution yields poor outcomes in terms of efficiency and distribution.

We consider a modification of the Heathcote, Storesletten and Violante (2017)

tax schedule that allows for lump-sum transfers that ensure that all workers receive

a minimum income. We find that this modification improves both efficiency and

distribution relative to a tax system without transfers. Hours worked by routine and

non-routine workers diverge over time. Full automation occurs in finite time, so

hours worked by routine workers fall to zero. Once full automation occurs, routine

workers pay no income taxes and the tax system can be designed so that the labor-

supply decisions of non-routine workers are not distorted. The economy with full

automation resembles the world of “Player Piano.” Only non-routine workers have

jobs. Routine workers live off government transfers and, despite losing their jobs,

are better off than in the status quo. The fact that full automation occurs in finite

time reflects the rudimentary nature of the tax system available to the government.

When the government has access to a more flexible non-linear tax schedule, as in the

Mirrleesian solution, full automation occurs only asymptotically.

One might expect optimal robot taxation to follow from well-known principles

of optimal taxation in the public finance literature. We know from the intermediate-

goods theorem of Diamond and Mirrlees (1971) that it is not optimal to distort pro-

duction decisions by taxing intermediate goods. Since robots are in essence an inter-

mediate good, taxing them should not be optimal.
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The intermediate-good theorem relies on the assumption that “net trades” of dif-

ferent goods can be taxed at different rates. In our context, this assumption means

that the government can use different tax schedules for routine and non-routine

workers. We study two environments where there are limits to the government’s

ability to tax different workers at different rates, Mirrlees (1971)-type information

constraints and a simple exogenous tax system common to both types of workers.

We find that it is optimal to tax robots in both environments.

This finding seems to contradict the key result in Atkinson and Stiglitz (1976).

These authors show that when the income tax system is non-linear it is not opti-

mal to distort production decisions by taxing intermediate goods. But, as stressed

by Naito (1999), Scheuer (2014), and Jacobs (2015), Atkinson and Stiglitz (1976)’s re-

sult depends critically on the assumption that workers with different productivities

are perfect substitutes in production. This assumption does not hold in our model.

Taxing robots can be optimal because it affects relative productivities, loosening the

incentive constraint of non-routine workers.

We extend our model to allow workers to switch their occupations by paying a

cost. In the first-best solution, workers who have a low cost of becoming non-routine

workers do so. Those with a high cost become routine workers. In the Mirrlees

solution to the model with occupational choice, it is optimal to use robot taxes to

loosen the incentive constraint of non-routine workers. The planner can use the

income tax schedule to redistribute income or to induce more agents to become non-

routine workers. When the cost of becoming non-routine are high (low), the planner

resorts more (less) to using the income tax schedule to redistribute income.

We generalize our static model to a dynamic setting in which robots are an in-

vestment good. The properties of the Mirleesian solution of the dynamic model are

similar to those of the static model. It is optimal to tax robots to loosen the incentive

constraint of non-routine workers. The levels of taxation are similar to those of the

static model. The tax rate on robots converges to zero as the degree of automation
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converges to one.

The paper is organized as follows. In Section 2, we describe our static model

of automation. Subsection 2.1 describes the status-quo equilibrium, i.e. the equi-

librium under the current U.S. income tax system and no robot taxes. Subsection

2.2 describes the first-best solution to the problem of an utilitarian planner. In sub-

section 2.3, we analyze a Mirrleesian second-best solution to the planner’s problem.

In subsection 2.4, we study numerically the optimal tax system that emerges when

income taxes are constrained to take the functional form proposed by Heathcote,

Storesletten and Violante (2017) both with and without lump-sum rebates. In sub-

section 2.5, we compare the implications of different policies for social welfare and

for the utility of different agents. Subsection 2.6 discusses the model with endoge-

nous occupation choice. In Section 3, we analyze a dynamic model of automation.

Section 4 relates our findings to classical results on production efficiency and capital

taxation in the public finance literature. Section 5 concludes. To streamline the main

text, we relegate the more technical proofs to the appendix.

Related literature ++++++++++++++++++

Missing literature

++++++++++++++++++

In section 3, we enrich the analysis of the static model to a more complex dy-

namic overlapping-generations model. This model features several important char-

acteristics. First, in the dynamic model, robots are an investment good which can

be accumulated over time. Second, we consider technological progress in the form

of investment-specific technical change as in Greenwood, Hercowitz, and Krusell

(1997). Because robots are more substitutable with routine workers than non-routine

workers, the technical change is skill biased which impacts the routine-skill pre-

mium.3 Technological advances lead to rising productivity, but increase pretax wage

3This is analogous to the skill-premium effects of capital-skill complementarity in Krusell, Oha-
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inequality among occupations. For that reason, a good description of the long-run

consequences of technological transitions requires an explicit model of skill acqui-

sition by workers. Our model endogeneizes the choice of skills by adopting an

overlapping-generations framework in which workers can choose their skills upon

entering the economy. In that feature, the model is related to a large literature study-

ing the effects of technology-specific human capital for the diffusion of technologies,

e.g. Chari and Hopenhayn (1991), Caselli (1999), Adao, Beraja, and Pandalai-Nayar

(2019), among others.

In this model, taxing robots affects the relative wages of routine and non-routine

workers thereby affecting human capital decisions and occupational choice. In that

sense, our analysis is related to Saez (2004), Scheuer (2014), Rothschild and Scheuer

(2013), and Gomes, Lozachmeur and Pavan (2017). These authors characterize Mirrlees-

style optimal tax plans in static models with endogenous occupation choice. Our

approach is closest to Scheuer (2014) who considers a model in which an agent faces

the choice of becoming a worker and an entrepreneur. Scheuer finds that, in the ab-

sense of differential taxation for these two occupations, the optimal plan may feature

production distortions, much like the ones we find.

There is a large literature extending the Mirrlees (1971) approach to dynamic set-

tings, e.g. Golosov, Kocherlakota, and Tsyvinski (2003), Werning (2007), Farhi and

Werning (2013), among others.4 Our analysis is closest to Slavı́k and Yazici (2014).

These authors consider optimal Mirrleesian taxation in an infinite-horizon model

with low- and high-skill workers and capital-skill complementarity. They find that

it is optimal to tax equipment capital because it is complementary to high-skill work-

ers and substitute to low skill. Furthermore, capital taxes are high initially and rise

over time.

Our analysis departs from theirs in two main ways. First, because we focus on

nian, Rios-Rull, and Violante (2000).
4A review of the dynamic Mirrleesian approach can be found in Kocherlakota (2010).
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the effects of automation as a technological transition, our model features technical

progress over time. As automation advances, the productivity of routine workers

falls. As a result, the optimal solution is such that routine workers eventually supply

zero labor hours. This means that there is no role for robot taxes in affecting relative

wages in the long run, so those taxes should be zero. We recover the celebrated

Chamley-Judd result of zero long-run capital income taxes.5 The reasons for positive

long-run capital-income taxes in Slavı́k and Yazici (2014)6 cease to be relevant once

we take into account skill-biased technical progress.

Second, we also consider an overlapping–generations model with skill choice. In

this model, taxation has a direct distribution effect on after-tax income and an indi-

rect distribution effect on the choice of skills. As technology improves, the indirect

redistribution channel becomes more important, i.e. the planner wants to induce a

higher fraction of the population to acquire non-routine skills. Since taxes on robots

are desirable only insofar as they improve the direct redistribution mechanism, the

reduced relative importance of this form of redistribution also implies that taxes on

robots should become zero.

THIS USED TO BE IN THE RELATED LITERATURE AT THE END The public-

finance literature discusses several reasons why it might be optimal to tax capital, in-

troducing intertemporal distortions.7 First, it might be optimal to use intertemporal

distortions to confiscate the initial stock of capital. Second, intertemporal distortions

can be optimal when the elasticities of the marginal utility of consumption and labor

are time varying. Third, intertemporal distortions can be used to provide insurance

in models with idiosyncratic risk. All three reasons are absent in our model.

5See Chamley (1986) and Judd (1985).
6The same reasons for the optimality of positive long-run income taxes when there are restrictions

to the taxation of different labor types are present in Jones, Manuelli, and Rossi (1997).
7For a recent overview of the literature on optimal capital taxation in a dynamic Ramsey setting

see Chari, Nicolini and Teles (2018).

7



We consider Mirleesian taxes which allow for lump-sum taxation so there is no

reason to confiscate the initial stock of capital. In addition, we assume that util-

ity is separable in consumption and labor and the disutility of labor is isoelastic.

Werning (2007) shows that under these conditions and with perfect substitutability

of labor types, the optimal tax on capital is zero. Because our dynamic model ab-

stracts from idiosyncratic risk, the reasons for capital taxation discussed in Golosov,

Kocherlakota and Tsyvinski (2003) do not apply.

Our results are related to work by Slavı́k and Yazici (2014). These authors study

optimal taxation in a model with two types of capital, structures and equipment, and

no technical progress. They assume that equipment raises the marginal product of

skilled workers relative to that of unskilled workers. In their set up, the optimal tax

on equipment rises over time. In contrast, the optimal tax on robots in our model

converges to zero. As discussed in Section 3, this property reflects the presence of

technical progress in our model.

In sum, the classical results on production efficiency in the public finance litera-

ture depend on one of two key assumptions: (i) the government can tax differently

every consumption good and labor type; or (ii) the environment is such that pro-

duction distortions do not help in shaping incentives. Both assumptions fail in our

model. On the one hand, the government cannot design the income tax system to

independently target each type of worker. On the other hand, robots are substitutes

for routine workers and complements to non-routine workers, so a tax on robots

affects the ratio of the wages of these two types of workers.

2 A simple static model

We first discuss a simple model of automation that allows us to address the optimal

tax policy questions posed in the introduction. The model has two types of house-

holds who draw utility from consumption of private and public goods and disutility
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from labor. One household type supplies routine labor and the other non-routine

labor. The consumption good is produced with non-routine labor, routine labor, and

robots. Robots and routine labor are used in a continuum of tasks. They are both

perfect substitutes in performing these tasks.8

Households There is a continuum of unit measure of households. A mass πn of

households is composed of non-routine workers while πr households are composed

of routine workers. The index j = n, r, denotes the non-routine and routine labor

type, respectively.

An household of type j derives utility from consumption, cj, and from the pro-

vision of a public good, G. The household also derives disutility from the hours

of labor it supplies, lj. Households have a unit of time per period, so lj ≤ 1. The

household’s utility function is given by

Uj = u(cj, lj) + v(G). (1)

Denote by ux = ∂u(c, l)/∂x where x = c, l and uxy = ∂2u(c, l)/∂x∂y. We assume

that uc > 0, ul < 0, ucc, ull < 0 and that consumption and leisure are normal goods:

ulc/ul − ucc/uc ≥ 0, and ull/ul − ucl/uc ≥ 0, where one of these conditions is a strict

inequality. Furthermore, we assume that utility satisfies the single-crossing property,

which is equivalent to assuming that ull l/ul + 1− ucl l/uc > 0. Finally, we assume

that vG > 0, vGG < 0 and that u(c, l) satisfies standard Inada conditions.

Household j chooses cj and lj to maximize utility (1), subject to the budget con-

straint

cj ≤ wjlj − T(wjlj),

where wj denotes the wage rate received by the household type j and T(·) denotes

the income tax schedule.
8See Autor, Levy and Murmane (2003) for a study of the importance of tasks performed by rou-

tine workers in different industries and a discussion of the impact of automating these tasks on the
demand for routine labor.
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Robot producers The cost of producing a robot is the same across tasks and is equal

to φ units of output. Robots are produced by competitive firms. A representative

firm producing robots chooses X to maximize profits pxX − φX. It follows that in

equilibrium px = φ and profits are zero.

Final good producers The representative producer of final goods hires non-routine

labor (Nn), routine labor, and buys intermediate goods which we refer to as robots.

Aggregate production follows a task framework which has become standard in the

automation literature (Acemoglu and Restrepo, 2018a, 2018b). There is a unit con-

tinuum of tasks that can be performed by either routine labor or robots. Services

provided by these tasks are denoted by yi for each i ∈ [0, 1]. The production func-

tion is given by

Y = A

[ˆ 1

0
y

ρ−1
ρ

i di

] ρ
ρ−1 (1−α)

Nα
n , α ∈ (0, 1), ρ ∈ [0, ∞). (2)

Each task can be produced with workers, ni, or with robots, xi

yi =

{
κixi, if i is automated
`ini, if i is not automated

(3)

The parameters κi and `i capture the efficiency of robots and routine labor, respec-

tively, in task i. We assume that κi/`i is weakly decreasing in i. This implies that

routine workers are relatively more efficient in higher ordered tasks. Given this as-

sumption, firms choose to automate the first tasks in that continuum. We denote by

m the level of automation, i.e. the number of tasks that are produced by robots, and

write the production function as:

Y = A

[ˆ m

0
(κixi)

ρ−1
ρ di +

ˆ 1

m
(`ini)

ρ−1
ρ di

] ρ
ρ−1 (1−α)

Nα
n . (4)
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The problem of the firm is to maximize profits, Y − wnNn − wr
´ 1

m nidi − (1 +

τx)φ
´ m

0 xidi, where Y is given by equation (4). The variable τx is an ad-valorem tax

rate on intermediate goods.

The optimal choices of Nn, xi for i ∈ [0, m], ni for i ∈ (m, 1] require that the

following first-order conditions be satisfied:

wn =
αY
Nn

, (5)

(1 + τx)φ = (1− α)Y

(ˆ m

0
(κsxs)

ρ−1
ρ ds +

ˆ 1

m
(`sns)

ρ−1
ρ ds

)−1

(κi)
ρ−1

ρ x
− 1

ρ

i (6)

wr = (1− α)Y

(ˆ m

0
(κsxs)

ρ−1
ρ ds +

ˆ 1

m
(`sns)

ρ−1
ρ ds

)−1

(`i)
ρ−1

ρ n
− 1

ρ

i , for . (7)

To simplify, we make the additional assumption that κi = `i = 1 for all i. This as-

sumption lends tractability and clarity to the exposition of our main results. Section

3 relaxes this assumption in a dynamic quantitative model.

Under this assumption, it follows that it is optimal to use the same level of routine

labor, ni, in the 1− m tasks that have not been automated and that the optimal use

of robots is also the same in the m automated tasks.

The optimal level of automation is m = 0 if wr < (1 + τx)px. The firm chooses

to fully automate (m = 1) and to employ no routine workers if wr > (1 + τx)px. If

wr = (1 + τx)px, the firm is indifferent between any level of automation m ∈ [0, 1].

In this case, equations (6) and (7) imply that the levels of routine labor and robots are

the same across tasks,

mxi = X, for i ∈ [0, m], and (1−m)ni = Nr, for i ∈ (m, 1], (8)

where Nr denotes total routine hours and X denotes total robots. Using the fact that

xi = nj, with interior automation we obtain m = X/(Nr + X), and we can write the

production function as Y = A (X + Nr)
1−α Nα

n .9 Since the technology has constant
9Under the assumption that `i = κi = 1, our task-based production function becomes exactly the

same aggregate production function studied by Autor, Levy, and Murnane (2003).
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returns to scale, profits are zero.

Government The government chooses taxes and the optimal level of government

spending, subject to the budget constraint

G ≤ πrT(wrlr) + πnT(wnln) + τx px

ˆ m

0
xidi. (9)

Equilibrium An equilibrium is a set of allocations {cr, lr, cn, ln, G, Nr, X, xi, ni, m},
prices {wr, wn, px}, and a tax system {T(·), τx} such that: (i) given prices and taxes,

allocations solve the households’ problem; (ii) given prices and taxes, allocations

solve the firms’ problem; (iii) the government budget constraint is satisfied; and (iv)

markets clear.

The market clearing conditions for routine and non-routine labor are

Nj = πjlj, j = r, n. (10)

The market-clearing condition for the output market is

πrcr + πncn + G ≤ Y− φ

ˆ m

0
xidi. (11)

The equilibrium with interior automation In an equilibrium with automation

(m ∈ (0, 1)), the wage rate of routine workers equals the cost of robot use: wr =

(1 + τx)φ. This condition implies that the number of robots used in each automated

task equals the number of routine workers used in each non-automated task

X
m

=
πrlr

1−m
.

Combining this equation with the firm’s first-order condition (6), we obtain

(1 + τx)φ = (1− α)[X + πrlr]−α(πnln)α. (12)
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Using this first-order condition and replacing X = mπrlr/(1−m), we find that,

given aggregate labor supplies πrlr and πnln, the equilibrium level of automation

satisfies

m = 1−
[
(1 + τx)φ

(1− α)A

]1/α πrlr
πnln

, (13)

Finally, using the other two first order conditions, we find that wages of both non-

routine and routine labor are independent of preferences,

wn = α
A1/α(1− α)

1−α
α

[(1 + τx)φ]
1−α

α

, (14)

wr = (1 + τx)φ. (15)

The wage of routine workers is determined by the after-tax cost of robots. Because

of constant returns to scale, the ratio of inputs is pinned down, and so is the wage

of the non-routine worker. An increase in τx raises the wage of routine workers and

lowers the wage rate of non-routine agents. Furthermore, production net of the cost

of robots is also given by a linear formula

Y− φX = πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx

. (16)

It is also useful to note that in any equilibrium the income shares of total produc-

tion are given by

wrπrlr
Y

= (1− α)(1−m), and
wnπnln

Y
= α.

An increase in automation reduces the income share of routine workers and does not

change the share of non-routine workers. In this sense, an increase in automation

leads to an increase in pre-tax income inequality.

2.1 The status-quo equilibrium

In this section, we describe the status-quo equilibrium, i.e. the equilibrium under

the current U.S. income tax system and no taxes on robot use (τx = 0). We model
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the U.S. income tax system using the functional form for after-tax income proposed

by Feldstein (1969), Persson (1983), and Benabou (2000) and estimated by Heath-

cote, Storesletten and Violante (2017). In this specification, the income tax paid by

household j is given by10

T(wjlj) = wjlj − λ(wjlj)
1−γ, (17)

where γ < 1. Using PSID data, Heathcote, Storesletten and Violante (2017) estimate

that γ = 0.181, which means that income taxes are close to linear. They find that

their specification fits the data with an R2 of 0.91. The parameter λ controls the level

of taxation, higher values of λ imply lower average taxes. The parameter γ controls

the progressivity of the tax code. When γ is positive (negative), the average tax rate

rises (falls) with income, so the tax system is progressive (regressive).

We assume in all our numerical work that the utility function takes the form:

u(cj, lj) + v(G) = log(cj)− ζ
l1+ν
j

1 + ν
+ χ log(G). (18)

These preferences, which have been used by Ales, Kurnaz and Sleet (2015) and

Heathcote, Storesletten and Violante (2017), have two desirable properties. First,

they are consistent with balanced growth. Second, they are consistent with the em-

pirical evidence reviewed in Chetty (2006).

For these preferences and the status-quo tax specification, both households choose

to work the same number of hours, lj = [(1− γ) /ζ]1/(1+ν), which only depend on

the preference parameters, ζ and ν, and the progressivity parameter, γ.

Model calibration We set ζ = 10.63, so that in the status-quo equilibrium agents

choose to work 1/3 of their time endowment. We set ν = 4/3, so that the Frisch
10Income in Heathcote, Storesletten and Violante (2017) includes other sources of income, other

than labor earnings.
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elasticity is equal to 0.75, which is consistent with the estimates discussed by Chetty,

Guren, Manoli, and Weber (2011).

Following Heathcote et al. (2017), we choose χ = 0.233 so that the optimal ratio

of government to output is 18.9 percent, the same weight observed in the U.S. econ-

omy.11 The tax on robots is zero in the status quo (τx = 0). We assume that the level

of progressivity of the tax system is γ = 0.181, the value estimated by Heathcote, et

al. (2017). We adjust λ to satisfy the government budget constraint.12 On the pro-

duction side, we normalize A to one, choose α = 0.53 and πr = 0.55. These choices

are consistent with the share of labor income received by non-routine workers and

the fraction of workers that are routine estimated by Chen (2016).13 These values of

A, α, πr and parameter choices are used in all our numerical experiments.

In our quantitative analysis, we consider a sequence of static economies where

the cost of a robot falls geometrically over time, φt = φ0e−gφt. We set gφ, the rate

of decline in the price of robots, equal to 0.0083. This value allows our model to

match the decline in task content estimated by Acemoglu and Restrepo (2018b) for

the period 2000-2008. We choose this period to abstract from the financial crises and

focus on the period where automation takes off in the U.S. We set φ0 = 0.4226 which

is the lowest value of φ consistent with no automation in the status-quo equilibrium

(see equation (13)). We assume that time zero corresponds to year 2000 and label our

figures accordingly.

Figure 1 describes the effect of changes in the cost of automation. As time goes by,

φ falls causing the wage of routine workers to fall and that of non-routine workers to

11When utility takes the form (18), the optimal ratio of government spending to output is the same
for all the tax systems we consider.

12An alternative approach would have been to keep the tax schedule constant and adjust the level
of government spending to balance the government budget. However, this approach would make it
more difficult to compare the solutions for the different tax systems.

13The equilibrium is independent of the value of ρ, the parameter that controls the elasticity of
substitution between different tasks. The reason for this result is that all the factors (non-routine
workers and/or robots) used in equilibrium to perform these tasks have the same marginal cost.

15



rise. Since the utility function is logarithmic and wages are the only income source,

hours worked remain constant for both routine and non-routine workers. This prop-

erty reflects the offsetting nature of income and substitution effects. Given that as φ

falls, wages of routine workers fall and their hours worked remain constant, their

income, consumption, and utility fall. In contrast, non-routine workers benefit from

rising income, consumption and utility.

As φ falls, the parameter that controls the level of taxation, λ, rises, which implies

a decline in the overall level of taxation. This decline reflects the increasing share

of tax revenue paid by non-routine workers pay and the fact that, as φ falls, their

income rises faster than output.

In sum, our analysis suggests that the current U.S. tax system will lead to massive

income and welfare inequality in response to a fall in the costs of automation.

2.2 The first-best allocation

It is useful to start our analysis by considering the first-best benchmark. This is

the allocation that maximizes a weighted average of the utility of agents, subject

only to technological constraints. Implicitly we are assuming that there are lump-

sum taxes/transfers targeted to the different agents, that can be used to implement

the allocation. The solution to this planning problem will be useful to serve as a

comparison to the solutions with more restricted tax systems.

The welfare weights are ωr and ωn to routine and non-routine agents, respec-

tively. These weights are normalized so that πrωr + πnωn = 1. The planner’s prob-

lem is to choose {cr, lr, cn, ln, G, m, {xi, ni}} to maximize social welfare,

W ≡ πrωr [u(cr, lr) + v(G)] + πnωn [u(cn, ln) + v(G)] . (19)

subject only to resource feasibility.

The first-best allocation features production efficiency. The robots’ marginal pro-

ductivity equals marginal cost, φ, so the robot tax is zero. The first-best allocation
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is on the production possibilities frontier, which implies that, with advances in au-

tomation, pre-tax income inequality rises. This is still consistent with optimality

because, with unrestricted taxes/transfers, it is possible to compensate for these ef-

fects. Once we introduce restrictions to the tax system, pre-tax wage inequality may

become relevant for redistribution and production efficiency may cease to be opti-

mal.

In our quantitative exercises, we assume equal welfare weights, ωr = ωn = 1.

Figure 2 illustrates the properties of the first-best solution. Panel A shows that full

automation occurs only asymptotically. The real wage rate for both types of workers

are the same as in the status-quo equilibrium, meaning that pre-tax income inequal-

ity is rising.14 The first-best allocation gives the same consumption to both types

of workers and requires larger labor supply from the more productive non-routine

workers.15 The consumption and utility of both types of worker rise as φ falls. Fig-

ure 2 also shows that implementing the first-best solution requires large transfers

from non-routine to routine workers.

The utility of routine workers exceeds that of non-routine workers. Clearly, the

first-best solution cannot be implemented if the planner cannot discriminate between

household types. In this solution, non-routine households would have an incentive

to act as routine to benefit from a more generous consumption and leisure bundle.

2.3 Mirrleesian optimal taxation

In this section, we characterize the optimal non-linear income tax when the planner

observes a worker’s total income but does not observe the worker’s type or labor

14The reason for this property is as follows. Equations (14) and (15) imply that wages depend on
technological parameters (α and A), the cost of automation, and the value of τx. Since τx = 0 in the
status quo and there is production efficiency in the first-best allocation, the wages are the same in
both allocations.

15One interpretation of the social welfare function with equal weights is as the ex-ante expected
utility of an agent who faces uncertainty about their labor market skills. The unrestricted optimal
insurance with separable utility features equal consumption in all states.
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supply, as in the canonical Mirrlees (1971) problem. For the reasons emphasized in

Guesnerie (1995), we assume that robot taxes are linear.

In the analytical description of the optimal policy, we focus attention on plans

with interior automation, m > 0.16 We also assume that φ ≤ αα(1− α)1−α A, so that

if τx ≤ 0 non-routine workers earn a higher wage (wn ≥ wr) in an equilibrium with

automation (see equations (14) and (15)).

The Mirrleesian planning problem is to choose the allocations {cj, lj}j=r,n, G, and

the robot tax τx to maximize social welfare, in equation (19), subject to the resource

constraint

πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx

. (20)

and two incentive constraints (IC)

u(cn, ln) ≥ u
(

cr,
wr

wn
lr

)
, (21)

u(cr, lr) ≥ u
(

cn,
wn

wr
ln

)
, (22)

The wages of the two types of workers are given by equations (14) and (15). As

is standard in the literature, the conditions (20), (21), and (22) are necessary and

sufficient to describe a competitive equilibrium.17

In the Mirrlees (1971) model, the productivities of different agents are exogenous.

In our model, these productivities are endogenous18 and depend on τx. This prop-

erty is central to the question we are interested in studying: is it optimal to distort

production decisions by taxing the use of robots to redistribute income from non-

routine to routine workers to increase social welfare?
16We do not discuss the case where m = 0 because in this case the results in Stiglitz (1982) apply to

our model.
17To save on space, We discuss necessity and sufficiency of these equations for a competitive equi-

librium in the appendix.
18In this characteristic, our work relates to a large literature on Mirrleesian taxation with general

equilibrium effects on prices/wages: Stiglitz (1982), Naito (1999), Rothschild and Scheuer (2013),
Scheuer (2014), Ales, Kurnaz, and Sleet (2015), Sachs, Tsyvinski, and Werquin (2019), among others.
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The tax on intermediate goods provides the government with an additional in-

strument relative to the Mirrlees (1971) setting. The planner can use this instrument

to affect the income of the two types of workers but its use distorts production.

To bring the analysis closer to a canonical Mirrleesian approach, we maximize

the planner’s objective in two steps. First, we set τx to a given level and solve for the

optimal allocations. Second, we find the optimal level of τx. We define W(τx) as the

maximum level of social welfare, (19), subject to the incentive constraints, (21) and

(22), and the resource constraint, (20) for a given value of τx. An optimal choice of τx

requires that W ′(τx) = 0.

The expression for net output in the right-hand side of equation (20) can be writ-

ten as
τx + α

α(1 + τx)1/α

αA1/α(1− α)
1−α

α

φ
1−α

α

πnln + φπrlr.

The term (τx + α) /
[
α (1 + τx)

1/α
]

is equal to one for τx = 0 and strictly less than one

for τx 6= 0. This term is a measure of the production inefficiency created by the tax on

robots. With automation is incomplete, the planner is willing to pay a resource cost,

in terms of this production inefficiency, in order to loosen the incentive constraints

that are also functions of the robot tax.

Proposition 1. Suppose the optimal allocation is such that the non-routine workers’ incen-

tive constraint binds and the incentive constraint for routine workers does not bind. Then, if

automation is incomplete (m < 1 and lr > 0), robot taxes are strictly positive (τx > 0). The

optimal tax on robots satisfies

τx

1 + τx
=

α

1− α

πrφlr
πnwnln

[
1 +

ωrul (cr, lr)
µφ

]
, (23)

where µ denotes the multiplier on the resource constraint (20).

This proposition is proved in the appendix. To see the intuition for this result,

suppose that τx < 0. A marginal increase in τx has two benefits. First, it strictly
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increases output and hence the amount of goods available for consumption. Second,

it reduces the relative wage wn/wr and makes the non-routine worker less inclined

to mimic the routine workers. This property can be easily seen from the incentive

constraint of the non-routine worker: u(cn, ln) ≥ u
(

cr, wn
wr

ln
)

.19

Consider instead τx = 0. Since a zero tax on robots maximizes output, for fixed

labor supplies, a marginal increase in that tax produces only second-order output

losses. On the other hand, increasing τx generates a first-order gain from loosening

the informational restriction. Therefore, starting from τx = 0, the planner can always

improve welfare with a marginal increase in τx.

Robot taxes are optimal only when automation is incomplete (m < 1), so that

routine workers are employed in production (lr > 0). When full automation is op-

timal (m = 1, lr = 0) there is no informational gains from taxing robots. Since the

robot tax distorts production and does not help loosen the incentive constraint of

the non-routine agent, the optimal value of τx is zero. We prove this result in the

appendix.

We now turn to the study of the optimal wedges. The optimality conditions imply

the following marginal rates of substitution:

ul(cn, ln)
uc(cn, ln)

= wn
τx + α

α(1 + τx)
,

ul(cr, lr)lr
uc(cr, lr)

=
ωr − ηn

uc(cr,wr lr/wn)
uc(cr,lr)

ωr − ηn
ul(cr,wr lr/wn)

1
wn

ul(cr,lr) 1
wr

wrlr
1 + τx

,

where ηnπr denotes the Lagrange multiplier of the incentive constraint of the non-

routine worker.

One property of the original Mirrlees (1971) model is that the labor-supply de-

cision of the high-ability agent should not be distorted. However, Stiglitz (1982)

19We characterize optimal allocations in which the incentive constraint of the non-routine worker
binds, and the incentive constraint of the routine worker is slack. This pattern holds in all our numer-
ical exercises.
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showed that with endogenous productivities, there high-ability agents should in-

stead be subsidized on the margin.

In our model, non-routine workers are subsidized at the margin when automa-

tion is incomplete. This subsidy corrects for the difference between the productivity

as perceived by the firm (wn) and the marginal increase in the resources available to

the planner from a marginal increase in πnln, which is equal to wn (τx + α) /α(1 +

τx), where (τx + α) /α(1 + τx) > 1.20

Routine workers are taxed at the margin when automation is incomplete for two

reasons. First, this tax corrects the distortion created by robot taxes, which make the

wages of routine workers higher than the marginal increase in the resources avail-

able to the planner from a marginal increase in πrlr. Second, taxing routine work-

ers makes it less appealing for non-routine workers to mimic routine workers and

loosens the IC of non-routine workers.

Figure 3 illustrates the properties of the equilibrium associated with Mirrleesian

optimal taxation. The process of automation begins later in the Mirrleesian solution

than in the first best. This property reflects the presence of robot taxes in the Mir-

rleesian solution. These taxes increase the wages of routine workers and decrease the

wages of non-routine workers. This wage compression loosens the incentive con-

straint of non-routine workers, which allows the government to redistribute more

income from non-routine to routine workers.

The path for the tax rate on robots has a hump shape. The economy starts with

inequality in wages that makes redistribution desirable. Since initially the cost of

distorting automation is relatively small, the planner chooses a level of robot taxes

which halts the process of automation. As the costs of automation fall, robot taxes

increase to prevent automation from occurring. After this initial period, robot taxes

fall. As robots become cheaper, it is inefficient to use routine workers so their labor

20Note that, in our model, the general-equilibrium effects emphasized by Stiglitz (1982) are reduced
in our model to the impact of the robot tax on pre-tax wages.
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supply falls. This decline in routine hours makes robot taxes less useful as a tool for

income redistribution. In the limit, routine hours converge to zero and so do robot

taxes.

Consumption of non-routine workers is higher than that of routine workers.

Since non-routine workers work harder than routine workers, the former need to re-

ceive higher consumption to satisfy their incentive constraint. Both types of workers

see their consumption rise as φ approaches zero. This outcome is achieved through

large transfers to the routine workers.

In the limit, routine households stop working and live off government transfers.

Those transfers are generous enough that the utilities of the two worker types are

equalized. The reason for this equalization is that, once routine workers supply

zero hours, there is no difference between the non-routine worker pretending to be

routine and that of the routine worker.

2.4 Ramsey optimal taxation

In this section, we compare the Mirrleesian allocation with the solution to a Ramsey

(1927)-style optimal taxation problem in which the tax schedule is restricted to take

a parametric functional form. The particular functional form we consider is the one

that has been widely used to describe the U.S. income tax system by Heathcote,

Storesletten, and Violante (2017), among many others.

Our goal is to assess which tax-system characteristics play a crucial role in ap-

proximating well the Mirrleesian solution. In that objective, our analysis is related

to Heathcote and Tsujiyama (2019). These authors ask whether the Mirrleesian so-

lution is best approximated either by linear taxation with a lump-sum transfer or by

a tax system that is progressive but does not feature a lump-sum component. They

find that, in their model, the second form of tax system performs better. Contrary

to their findings, the present section shows that during skill-biased technological

transitions a lump-sum transfer is an important instrument of the tax system. These
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transfers can be interpreted as a form of universal basic income.

The tax/transfer system is assumed to take the form described in equation (17),

extended to also include a lump-sum transfer. This function has three parameters, γ

and λ, and Ω. When γ is zero, the tax system is linear with a rate λ. This parameter

captures the level of taxes. The parameter γ captures progressivity in the tax system.

Finally, Ω denotes the lump-sum transfer. If the household has income y, their after-

tax income is thus λy1−γ + Ω.2122 In our numerical exercises, we will consider both

the case when transfers are restricted to be zero, Ω = 0, and when they can be freely

chosen by the government. Because these forms of taxation have been extensively

studied by Heathcote, Storesletten, and Violante (2018), we call the case with Ω = 0

the HSV-type taxes case. We refer to the case Ω 6= 0 as the HSV-type taxes with

lump-sum transfers case.

We characterize the competitive equilibrium for this economy in the Appendix.

Using these equations, we can write the ratio of the consumption of routine and

non-routine workers as:

cr −Ω
cn −Ω

=

[
(1− α)(1−m)

α

πn

πr

]1−γ

. (24)

This condition results from the fact that the government must set the same income

tax schedule for both routine and non-routine agents.

Suppose first that Ω = 0. In this case, equation (24) shows that there are two ways

to make the ratio cr/cn closer to one. One way is to raise τx which leads to a fall in

the level of automation, m. The other way is to make γ closer to one, i.e. make the tax

21This function has been widely used to study the U.S. income tax system and has recently been
estimated by Heathcote, Storesletten and Violante (2017), for the case Ω = 0.

22When Ω 6= 0 progressivity the tax system may still be progressive even if γ = 0, as long as the
transfer is positive. Overall progressivity of the tax system should be analyzed from average taxes
which are given by

T(y)
y

= 1− λy−γ − Ω
y

.

The average tax is increasing as long as γ ≥ 0 and Ω ≥ 0.
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system more progressive. Both approaches have drawbacks. Taxing robots distorts

production. Increasing progressivity reduces incentives to work. If the government

can also use transfers, Ω, then it is clear that higher positive transfers can help in

bringing the ratio of consumption closer to one, holding everything else constant.

Again, this benefit comes at the cost of desincentivizing labor supply.

Since we are interested in studying optimal taxation in an economy with automa-

tion, we focus on equilibria where m > 0. In this case, equation (24) can be written

as:

cr −Ω = (cn −Ω)

[
(1− α)

α

πn

πr

(
φ(1 + τx)

(1− α)A

)1/α πrlr
πnln

]1−γ

, (25)

The planning problem is to choose allocations {cn, cr, lr, ln, G} and the tax param-

eters {τx, γ, Ω}, subject to the following conditions

uc(cj, lj)
(
cj −Ω

)
+

ul(cj, lj)lj

1− γ
= 0, j = r, n, (26)

u
(
cj, lj

)
≥ u (Ω, 0) if Ω ≥ 0, j = r, n , (27)

and the resource constraint with interior automation, (20).

Conditions (26) are obtained from the budget constraints for each household

type, combining the first-order conditions to replace prices and taxes. They are the

usual Ramsey implementability constraints. The second condition (25) imposes that

the tax system is the same for both household types. With positive lump-sum trans-

fers and regressivity, γ < 0, the solution to the households problem may not be inte-

rior, meaning that the household may choose to work zero hours and set consump-

tion equal to the transfer. The conditions (27) impose that the household’s allocation

does not yield lower utility than that corner solution. We show in the appendix that

these conditions are necessary and sufficient for a competitive equilibrium in the

quantities {cn, cr, lr, ln, G} and the tax parameters {τx, γ, Ω}.
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The optimal tax on robots satisfies

τx

1 + τx
=

α

1− α

η (1− γ)

µwnπnln

(
cr −Ω

cr

)
, (28)

where η/cr is the multiplier for the no-discrimination constraint (25) and µ is the

multiplier for the resource constraint.23 This expression also holds for the case in

which the lump-sum transfers is constrained, just by setting Ω = 0.

Since the marginal utility of public expenditures is always positive, the marginal

value of resources to the planner, given by the multiplier µ, is strictly positive. The

multiplier η captures the marginal value of redistributing income to routine house-

holds, which is limited by the assumptions on the income-tax function. If η > 0, the

marginal value of additional redistribution of income towards routine workers is

positive and robot taxes are strictly positive as long as cr > Ω, i.e. as long as routine

workers also have some labor income.

In the case in which transfers are constrained to be zero, then robot taxes must

always be strictly positive. The intuition for this result is that since the government

has to use the same income tax function for both types of workers, taxing robots

helps redistribute income by increasing the pre-income tax wage of routine workers

and lowering that of non-routine workers.

When transfers can be freely chosen, the optimal plan may feature cr = Ω, in

which case the routine worker supplies zero labor hours. In this limiting case, there

is no role for redistributing by affecting the relative wages, and robot taxes should

be set to zero.

Figure 4 shows the optimal policy when transfers are constrained to be zero,

Ω = 0. It shows that the form of the tax function constrains heavily the outcomes

that can be achieved. As discussed above, the planner can redistribute income by

taxing robots or by increasing progressivity. Taxing robots distorts production and

23See the appendix for the derivation.
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higher progressivity reduces incentives to work. Since initially the cost of distort-

ing automation is relatively small, the planner chooses a level of robot taxes con-

sistent with no automation. Robot taxes are heavily used, reaching values as high

as τx = 0.33. As the costs of automation decline, the progressivity of the income

tax rises. But there is still a large divergence in wage rates, consumption and utility

across the two types of workers.

Figure 5 illustrates the properties of this allocation when transfers can be freely

chosen. Workers have two sources of income: wages and transfers. For this reason,

income and substitution effects of changes in wages are no longer offsetting. As a

consequence, the two types of workers supply a different number of hours and their

hours vary with φ.

The optimal solution with lump-sum transfers features full automation even when

robots are still relatively expensive. In contrast, full automation occurs only asymp-

totically with Mirrleesian taxes and optimal simple taxes. Once full automation oc-

curs, routine households have no labor income. Since only non-routine workers pay

income taxes, the planner designs the tax system to avoid distorting their marginal

labor-supply decisions. This result is achieved by increasing the regressivity of the

tax system (i.e. lowering γ < 0) so that, given the level of taxation implied by λ, the

marginal income tax rate for non-routine workers is zero. In this way, the taxation of

non-routine households is effectively equivalent to lump-sum taxes.24 The level of

transfers is chosen so that the non-routine worker is indifferent between the interior

solution, with positive labor, and the corner solution with zero labor and consump-

tion equal to transfers. For a higher level of transfers, both agents would supply zero

labor.25

24The same logic implies that in a representative-agent economy it is possible to use the Heathcote
et al. (2018) tax function to obtain the same allocation as with lump-sum taxes. This allocation is
achieved by choosing a regressive tax system such that the marginal tax rate is zero. Government
expenditures are financed with the revenue raised by the infra-marginal tax rates.

25In the appendix, we show a numerical example of the individual agent’s problem with one such
solution.
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The availability of lump-sum transfers is essential for full automation to occur

in finite time. Without lump-sum transfers, a routine worker who drops out of the

labor force has zero consumption. For this reason, routine workers never drop out of

the labor force.

One surprising result is that full automation occurs with this restricted tax sys-

tem and not in the Mirrleesian solution which also allows for lump-sum transfers.

The intuition for this result is as follows. Because preferences are separable and have

constant Frisch elasticity, the marginal disutility of labor converges to zero as labor

hours approach zero. For this reason, a Mirrleesian planner finds it optimal to have

routine workers supply positive labor, even if productivity is very low. With a gen-

eral tax function it is possible to implement very different marginal distortions for

both types of worker. As we have seen before, the Mirrleesian solution features a

negative marginal distortion for non-routine workers, and a positive marginal dis-

tortion for routine workers. This solution cannot be obtained with the simple tax

function. The restrictions on the marginal distortions associated with this function

are such that the planner prefers a corner solution for the labor supply of routine

workers. By excluding routine workers from the labor force, the planner can design

the simple tax system to target only non-routine workers, reducing their marginal

tax rate to zero so that in effect they are taxed in a lump-sum fashion.

In such an equilibrium, income is redistributed through a large lump-sum trans-

fer. This transfer can be interpreted as a minimum income that is guaranteed to all

agents in the economy. When automation is incomplete, robot taxes are used as an

additional source of redistribution and τx can be as high as 37 percent. Complete

automation occurs shortly after 2050, once the cost of robots drops below φ = 0.27.

2.5 Comparing different policies

In this section, we compare the first-best allocation with the allocations associated

with different policies in terms of social welfare and the utility of routine and non-
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routine workers. In the figures discussed below, we use the labels FB, SQ, OT, HSV

and HSV-L to refer to the first-best, status-quo, Mirrleesian optimal taxes, HSV-type

taxes, and HSV-type taxes with lump-sum transfers, respectively.

Figure 6 shows the welfare of the utilitarian social planner under the different

policies, between the years 2000 and 2150. Recall that the level of φ in the year 2000

was chosen as the lowest value for which there is no automation in the status quo.

Social welfare rises as the costs of automation fall both for the first best and for all the

policies we consider. We see that the Mirrlees allocation is relatively close in terms of

welfare to the first-best allocation. The solution with simple taxation and lump-sum

transfers ranks next in terms of welfare, followed by the solution with simple taxes

without rebates. The status quo is by far the worst allocation.

A fall in the cost of automation can have very different consequences for routine

and non-routine workers. To illustrate this property, we measure the utility of the

two types of workers relative to the status-quo equilibrium in year 2000. We call this

allocation the no-automation benchmark. Panel A (B) of Figure 7 shows how much

routine (non-routine) workers would have to be compensated in the no-automation

benchmark to be as well off as in the policy under consideration, for the different

years. The measure is computed as a percentage of consumption.

Panel A of Figure 7 shows that the utility of routine workers in the first-best

allocation improves as φ falls over time. In contrast, in the status quo, routine work-

ers become increasingly worse as automation becomes more pronounced. With Mir-

rleesian optimal taxation, routine workers are always made better off. With simple

income taxes, routine workers are not made better off until after 2150. We can see

that including a universal form of income is a simple way of recovering gains for

routine workers. Indeed, shortly after 2050 the routine worker is almost as well off

in this solution as in the solution with Mirrleesian taxes.

Panel B of Figure 7 shows that non-routine workers prefer the no-automation

benchmark to the first best while automation costs are relatively high (almost until
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2100). This preference reflects the large transfers that non-routine workers make to

routine workers in the first best. Once automation costs fall by 62 percent relative to

their 2000 value, which happens in 2116, non-routine workers prefer the first best to

the no-automation benchmark. The reason is that the wage of non-routine workers

is high enough to compensate for the transfers they make to routine workers. Start-

ing in 2015, non-routine workers prefer the status quo to all other allocations. This

preference results from a combination of high wages and relatively low taxes in the

status quo.

Routine workers always rank the first-best allocation first, Mirrleesian optimal

taxation second, HSV-L third, HSV fourth, and the status quo last. The utility for

the allocation with simple taxes and lump-sum transfers approaches that under Mir-

rleesian taxes as the cost of automation falls. In contrast, non-routine workers rank

the status quo first and the first best last. Mirrleesian optimal taxation, and HSV and

HSV-L transfers rank in between the two extremes.

3 A dynamic model

In this section, we enrich the analysis of the static model to a more complex dy-

namic overlapping-generations model. This model features several important char-

acteristics. First, in the dynamic model, robots are an investment good which can

be accumulated over time. Second, we consider technological progress in the form

of investment-specific technical change as in Greenwood, Hercowitz, and Krusell

(1997). Because robots are more substitutable with routine workers than non-routine

workers, the technical change is skill biased which impacts the routine-skill pre-

mium.26 Technological advances lead to rising productivity, but increase pretax

wage inequality among occupations. For that reason, a good description of the long-

26This is analogous to the skill-premium effects of capital-skill complementarity in Krusell, Oha-
nian, Rios-Rull, and Violante (2000).
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run consequences of technological transitions requires an explicit model of skill ac-

quisition by workers. Our model endogeneizes the choice of skills by adopting an

overlapping-generations framework in which workers can choose their skills upon

entering the economy.

Workers and preferences Time is discrete and infinite, t = 1, 2, ... Each worker is

characterized by a duplet (θ, t) ∈ Θ ×N0, where t denotes the time at which the

household enters the economy, and θ ∈ Θ ⊂ R denotes the household’s cost of skill

acquisition. There is a continuum of unit measure of workers born in each period.

We assume that θ is distributed according to an absolutely continuous distribution

function Λ, with p.d.f. λ. Each worker lives for two periods. For the sake of expo-

sition, we say that workers born in period t are “young” in period t, and “old” in

period t + 1.

When young, workers choose their skills, work, consume, and save. When old,

workers only have a consumption decision. Agent’s who were born in t = 0 enter

the economy as old.

We denote the consumption of the young household at time t by cy
t (θ), and con-

sumption of the old by co
t (θ). Labor supply by the young household is denoted by

lt(θ). Households can choose whether to learn non-routine occupations, we denote

this decision by st(θ). If st(θ) = 1 then the household has chosen to learn non-routine

worker skills, while st(θ) = 0 denotes that the worker is a routine worker.

The household’s choice of skills determines their occupation, either routine or

non-routine. We denote by Θr and Θn the subsets of Θ which become routine and

non-routine, respectively, i.e.

Θn,t ≡ {θ : st(θ) = 1} (29)

and Θr,t ≡ Θ−Θn,t.
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The utility function of household (θ, t) is given by

Ut(θ) = u
(
cy

t (θ)
)
− ψ (lt(θ)) + v(Gt) + β[u(co

t+1(θ)) + v(Gt+1)]− θst(θ) (30)

where Gt denotes public goods at time. We assume that the utility function is sep-

arable in consumption and labor27 and verifies the standard assumptions of mono-

tonicity and concavity. Old workers in period 1 are all alike, they derive utility from

consumption, c0
1, and public goods, G1, and their utility function is

U0 = β[u(co
1) + v(G1)].

The utility representation above has the following interpretation: households

have heterogeneous costs with respect to the acquisition of routine and non-routine

skills. A worker with a positive θ faces a positive cost of acquiring non-routine skills,

which means that all else equal they would prefer to acquire routine skills. If θ is

negative, then all else equal the worker would prefer to acquire non-routine skills.

Firm’s, technology, and equilibrium At time t, the cost of producing a robot is

equal to φt units of output. Robots are produced by competitive firms. A representa-

tive firm producing robots chooses it to maximize profits px,tit − φtit. It follows that

in equilibrium px,t = φt and profits are zero. The stock of robots evolves according

to:

Xt+1 = (1− δ)Xt + it/φt,

where δ denotes the depreciation rate of robots.

Following the literature on automation, we adopt a task-based framework to

model the production of final goods.28 The production of final goods combines

27As is well known, without weak separability between consumption and leisure, the uniform
taxation result in Atkinson and Stiglitz (1976) fails. In a dynamic setting, this failure would mean that
the optimal plan features intertemporal distortions, i.e. it is optimal to tax consumption in different
periods at different rates. This reason to tax capital is orthogonal to the one we focus on and, for that
reason, we assume separability.

28See Acemoglu and Restrepo (2018a, 2018b).
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non-routine labor, Nn,t, with a continuum of routine tasks yi,t for i ∈ [0, 1], in the

following way

Yt = A

[ˆ 1

0
y

ρ−1
ρ

i,t di

] ρ
ρ−1 (1−α)

Nα
n,t, (31)

where A denotes total factor productivity and α is the share of non-routine work-

ers in production. The assumption that the elasticity between total routine services

and non-routine labor is unitary is important because it ensures the existence of a

balanced growth path which is reached asymptotically.29

As in the static model, each task i can be done by workers ni, or it can be auto-

mated and performed by robots.

yi,t =

{
κixi,t, if i is automated
`ini,t, if i is not automated

(32)

The parameters κi and `i capture the efficiency of robots and routine labor, respec-

tively, in task i. We assume that κi/`i is weakly decreasing in i.

Firm’s maximize after-tax dividends, which are given by

Yt + px,t(1− δ)Xt − RtXt − wr,tNr,t − wn,tNn,t − τ
p
t πt (33)

where πt = Yt − px,tδXt −wr,tNr,t −wn,tNn,t. As in the static model, Xt =
´ 1

0 xi,t and

Nr,t =
´ 1

0 ni,t.

The optimal allocation of robots and routine workers over the different tasks fol-

lows the same principles of our static model, i.e. in period t, the firm uses robots in

the first mt and routine workers in the final 1− mt tasks. The optimal allocation of

routine workers and robots to each of those tasks have the same first-order condi-
29It is well known that our results hold for more general production structures. In the main text, we

restrict the analysis to parametric assumptions which ensure the existence of an asymptotic balanced
growth path, and keep our exposition close to the literature on automation. The results could be
easily extended.
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tions as in the static model. These conditions imply:

xi,t =
κ

ρ−1
i´ mt

0 κ
ρ−1
j dj

Xt, i ∈ [0, mt] and ni,t =
`

ρ−1
i´ 1

mt
`

ρ−1
j dj

Nr,t, i ∈ (mt, 1].

As in Acemoglu and Restrepo (2018a,b), we can replace these expressions in the

production function to obtain:

Yt = A

(ˆ mt

0
κ

ρ−1
i di

) 1
ρ

X
ρ−1

ρ

t +

(ˆ 1

mt

`
ρ−1
i di

) 1
ρ

N
ρ−1

ρ

r,t


ρ

ρ−1 (1−α)

Nα
n,t (34)

The optimization with respect to mt implies the following relation:

Xt

Nr,t
=

´ mt
0 κ

ρ−1
i di´ 1

mt
`

ρ−1
i di

`
ρ
mt

κ
ρ
mt

.

At this level of generality, the above expression cannot be solved in closed form.

However, under a suitable assumption this expression can be solved and yield an

aggregate production function which renders our analysis tractable.

Assumption 1. Assume that κi =
[
1− ρ−1

ε−1

]
i−

1
ε−1 and `i =

[
1− ρ−1

ε−1

]
(1− i)−

1
ε−1 , where

ε > ρ.

Under this assumption, the solution with respect to mt is just

mt =
X

ε−1
ε

t

X
ε−1

ε
t + N

ε−1
ε

r,t

, (35)

and the routine services aggregator becomes just a CES aggregator of total robots

and routine work, where ε > 0 denotes the elasticity of substitution between robots

and routine workers:30

Yt = A
[

X
ε−1

ε
t + N

ε−1
ε

r,t

] ε−1
ε (1−α)

Nα
n,t. (36)

30This derivation is similar to the one in Chen (2017).
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For short we write this production function as F(Xt, Nr,t, Nn,t). Defining the deriva-

tives Fx,t ≡ dF(Xt, Nr,t, Nn,t)/dXt, and Fj,t = ∂F(Nr,t, Nn,t, Xt)/∂Nj,t for j = r, n, we

have that the first order conditions with respect to Xt, Nr,t, and Nn,t imply that

wj,t = Fj,t, for i = r, n,

Rt = px,t + (1− τ
p
t )(Fx,t − px,tδ).

As discussed in Chari, Nicolini, and Teles (2018), with the decentralization we adopt,

the linear tax on profits acts like a distortion on the optimality conditions for robots

in the same way as was originally assumed by Judd (1985) and Chamley (1986).

As in the previous section, the important characteristic is that robots share a

higher degree of complementarity with non-routine work than with routine work.

For that, we assume that ε > 1 such that routine workers and robots are substitutes.

Note that this implies that

Et ≡
d log (Fr,t/Fn,t)

d log Xt
= − ε− 1

ε
mt ≤ 0.

The resource constraint in period t can be written as

∑
a=y,o

ˆ
θ

ca
t (θ)λ(θ)dθ + Gt + φt [Xt+1 − (1− δ) Xt] ≤ F (Xt, Nr,t, Nn,t) , (37)

where Nj,t ≡
´

Θj,t
lt(θ)λ(θ)dθ. The budget constraint of the government is implies

by Walras’ law.

Definition 1. An equilibrium is a set of individual allocations {(cy
t (θ), co

t (θ), lt(θ), st(θ), xt(θ))θ∈Θ}t≥1,

aggregates {Gt, Nr,t, Nn,t, Xt, mt}, prices {wr,t, wn,t, px,t}t≥1, and a tax system {Ty
t (·), To

t (·), τa
t (·), τ

p
t }t≥1

such that: (i) given prices and taxes, allocations solve the households’ problem; (ii) given

prices and taxes, allocations solve the firms’ problem; (iii) the government budget constraint

is satisfied; and (iv) markets clear

34



3.1 First-best allocation

We assume that the planner assigns Pareto weights βtωt(θ) to agents of type (θ, t),

and we normalize the weights, ωt(θ), such that

(1− β)
∞

∑
t=0

ˆ
Θ

βtωt(θ)λ(θ)dθ = 1.

The planner’s objective function is

W ≡
∞

∑
t=0

ˆ
Θ

βtωt(θ)Ut(θ)λ(θ)dθ. (38)

We assume that the weights converge in the long run, i.e. for all θ, ωt(θ)→ ω(θ) ≥ 0

as t→ ∞.

The first-best allocation maximizes this welfare function subject to the resource

constraints (37). The solution to this problem implies the following efficiency condi-

tions, which equate marginal rates of substitution to marginal rates of transformation

ψ′(lt(θ))
u′(cy

t (θ))
= Fst(θ)(t),

and
u′(cy

t (θ))

βu′(co
t+1(θ))

=
Fx(t + 1) + φt+1(1− δ)

φt
,

for all θ.

Assume that the Pareto weights are such that ωt(θ)θ is weakly growing in θ,

then the first-best level of skill acquisition is determined by a threshold rule. This

means that there exists θ∗t ∈ Θ such that for smaller enough θ, θ < θ∗t , we have

that st(θi = n and all large enough θ > θ∗t become routine workers, st(θ) = r. The

optimal threshold is determined by

ωt(θ
∗
t )θ
∗
t =

Fn(t)− Fr(t)
v′(Gt)

lt(θ∗t ).
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3.2 Mirrleesian taxation

In this section, we characterize the optimal non-linear income tax when the planner

observes a worker’s total income but does not observe the worker’s type, skill choice,

or labor supply. The planner can discriminate across generations.

In the appendix, we show that the necessary and sufficient conditions for imple-

mentation are the same as those that characterize a direct implementation mecha-

nism where households declare their type θ and get assigned an allocation. Income

and consumption are observable, but the government cannot observe labor, wage

or skill choice. Given this informational asymmetry, the constraints that guarantee

truth-telling are as follows.

The first condition is the same incentive constraint on the choice of hours worked

that we have used in the static model:

u
(
cy

t (θ)
)
−ψ (lt(θ))+ βu

(
co

t+1(θ)
)
≥ u

(
cy

t (θ
′)
)
−ψ

(
Fst(θ′),t

Fst(θ),t
lt(θ′)

)
+ βu

(
co

t+1(θ
′)
)

,

(39)

for all θ, θ′ ∈ Θ. This labor-supply incentive constraint guarantees that the household

chooses the assigned allocation, fixing their occupation choice.

The second condition is the incentive constraint for the choice of occupation of

an individual of type θ:

u
(
cy

t (θ)
)
− ψ (lt(θ)) + βu

(
co

t+1(θ)
)
− st(θ)θ

≥ u
(
cy

t (θ
′)
)
− ψ

(
lt(θ′)

)
+ βu

(
co

t+1(θ
′)
)
− st(θ

′)θ, . (40)

for all θ, θ′ ∈ Θ and t = 1, 2, 3... This occupation-choice incentive constraint ensures

that the household chooses the assigned occupation.31 The planning problem is to

maximize (38) subject to these incentive constraints and the resource constraints (37).

31These constraints do not explicitly take into account the possibility that agent θ might choose an
allocation (cy

t (θ
′), co

t (θ
′), yt(θ′)) at a different occupational choice than st(θ′). However, those addi-

tional constraints are redundant.
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We now state two results which allow us to simplify our analysis. These same

results appear in Scheuer (2014). The proofs can be found in the appendix.

Lemma 1. An allocation satisfies the extensive margin incentive constraints if and only if

for all t there exists Ur,t, Ur,t ∈ R and θ∗ = Un,t −Ur,t such that:

1. If θ < θ∗t , then st(θ) = 1 and Ut(θ) = Un,t − θ;

2. If θ > θ∗t , then st(θ) = 0 and Ut(θ) = Ur,t.

This lemma allows us to simplify the incentive constraints. For an allocation to

be incentive compatible, all workers that make the same skill choice should have the

same utility gross of skill acquisition costs. As a result, these incentive constraints

can be simplified to a cut-off rule. This rule implies that all workers with relatively

low θ acquire non-routine skills, while those with high θ acquire non-routine skills.

We can do one further simplification. As the next lemma shows all workers that

have the same skill choice should have the same allocation in terms of consumption

and labor.

Lemma 2. In the optimum, if st(θ) = st(θ′) then cy
t (θ) = cy

t (θ
′), co

t+1(θ) = co
t+1(θ

′), and

lt(θ) = lt(θ′).

As a result, in the optimum we need only find the allocations for agents that

acquire routine skills and for the agents that acquire non-routine skills. We can find

the optimum by maximizing welfare

ω0U0 +
∞

∑
t=1

βt

{
∑

j=n,r
Λj,tωj,tUj,t −

ˆ θ∗t

−∞
θλ(θ)ω(θ)dθ

}
(41)

where Uj,t ≡ u(cy
j,t) − ψ(lj,t) + v(Gt) + β(u(co

j,t+1) + v(Gt+1)), Λn,t ≡
´ θ∗t
−∞ λ(θ)dθ,

Λr,t ≡
´ ∞

θ∗t
λ(θ)dθ, and ωj,t ≡

´
θ∈Θj,t

λ(θ)
Λj,t

ω(θ)dθ. Subject to the constraint on θ∗t

θ∗t = Un,t −Ur,t, (42)
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two intensive margin incentive compatibility constraints

u(cy
n,t) + βu(cy

n,t+1)− ψ(ln,t) ≥ u(cy
r,t) + βu(cy

r,t+1)− ψ

(
Fr,t

Fn,t
lr,t

)
, (43)

u(cy
r,t) + βu(cy

r,t+1)− ψ(lr,t) ≥ u(cy
n,t) + βu(cy

n,t+1)− ψ

(
Fn,t

Fr,t
ln,t

)
(44)

and the resource constraint

∑
j=r,n

Λj,tc
y
j,t + ∑

j=r,n
Λj,t−1co

j,t + Gt + φt [Xt+1 − (1− δ) Xt] = F (Xt, Λr,tlr,t, Λn,tln,t)

(45)

for t ≥ 2, and the resource constraint at t = 1 which is similar but there is only one

co
1.

The next proposition states results analogous to those we obtained for the static

model: as long as automation is incomplete and the intensive margin incentive con-

straint of non-routine binds, (43), there are positive wedges in the accumulation of

robots.

Proposition 2. In the optimal plan, the consumption-intertemporal wedge is the same for

all workers,
uc(c

y
r,t)

βuc(co
r,t+1)

=
uc(c

y
n,t)

βuc(co
n,t+1)

.

Suppose furthermore that the incentive compatibility of non-routine workers at time t + 1,

(43), is binding, and that of routine workers at time t + 1, (44), is not. Then, as long as

routine labor hours are strictly positive (lr,t+1 > 0), the intertemporal wedge is strictly

positive,
uc(c

y
r,t)

βuc(co
r,t+1)

=
uc(c

y
n,t)

βuc(co
n,t+1)

<
Fx,t+1 + (1− δ)φt+1

φt

.

As in the static model, it may be optimal to tax robots when the hours supplied by

routine workers are positive. Since robots are a form of capital, their use is taxed by
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creating a positive intertemporal wedge which distorts the accumulation of capital

goods. Notice also that in this economy the intertemporal marginal rates of substi-

tution of the two agents are equated. This is a consequence of the assumption that

consumption and labor are separable in the utility function. The corollary shows that

there is an implementation of this optimum which does not require taxes on asset re-

turns. The tax on profits is sufficient to achieve the distortions on the intertemporal

margins.

Unlike the static model, because this dynamic model features endogenous skill

acquisition it is no longer clear that the intensive margin incentive constraint of non-

routine workers should bind even if the government wants to redistribute income.

That is because in this model, taxation affects the composition of the labor force.

The government faces two options to achieve better outcoems. The first is to

redistribute income from non-routine to routine agents. By doing so the government

redistributes after-tax income. We call this the direct redistribution mechanism, which is

the driving force of our results in the static model. In a model with endogenous skill

choice this comes at the cost of desincentivizing workers from acquiring non-routine

skills. The second way is through an indirect redistribution mechanism. In this solution,

the planner provides little redistribution to routine workers in order to incentive

agents to acquire non-routine skills, and consequently the intensive margin incentive

constraint no longer binds. Because taxes on robots are only desirable insofar as they

help provide incentives on this intensive margin, in this solution there is no longer

a need to tax robots and distort production. Which of these solutions turns out to be

optimal is a quantitative question.

Asymptotic balanced growth We assume that the cost of robots declines geometri-

cally over time, φt = φe−gφt, which means that the dynamic problem features growth

arising from investment-specific technical change as in Greenwood, Hercowitz and

Krusell (1997). We assume that technological progress is exogenous and not affected
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by taxation.

Because our model features economic growth, we require preferences to be con-

sistent with steady state balanced growth. This amounts to assuming that u(·) and

v(·) are logarithmic functions.

Assumption 2 (BG Preferences). The utility function takes the form u(c) = log(c) and

v(G) = χ log(G), with χ > 0.

These preferences have been used in different public finance applications, espe-

cially the ones featuring technical change, e.g. Ales, Kurnaz, and Sleet (2015). Recall

that these preferences are also compatible the empirical evidence reviewed in Chetty

(2006).

In the appendix we show how the variables in our model can be normalized to

remove trends. We call this the normalized economy. We say that the economy is in

a steady state growth path if the allocations of the normalized economy are constant

over time, i.e. if the allocations of the economy with the normalized variables is in

steady state.

In general, in dynamic optimal taxation problems long-run/steady-state alloca-

tions are a function of initial conditions. This is the case, for instance, of optimal tax-

ation of Chamley (1986), Judd (1985), Slavı́k and Yazici (2014), among others. Our

next proposition shows that this is not the case in our model. Because our model

features overlapping generations, the inter-period link is broken, in the sense that

the very long-run allocations do not affect the provision of incentives in the short

run. As a consequence, if the optimal plan converges to an interior steady state, it

converges to a unique one.32

Lemma 3. Generically, for all initial conditions, there exists a unique steady state growth

path of the planning problem with interior automation.

32A similar argument for an Aiyagari economy in Acikgoz, Hagedorn, Holter, and Wang (2018).
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This result provides a great deal of tractability to our quantitative implementa-

tion. We can compute the steady state of the normalized economy separately from

the transition to that steady state.

NOTE: The reason why this is generically is because there are two possible steady

states: one in which the intensive marign incentive compatibility constraint of non-

routine workers binds and then θ∗∞ = 0, and one in which it does not and θ∗∞ >

0. Which of these is the solution depends on the distribution of θ. There may be

distributions for which both are a solution but those are not generic.

Proposition 3. Suppose that the optimal plan is such that the allocations converge to the

steady state growth path with interior automation. Then, the intertemporal wedge should

converge to zero.

Corollary 1. Suppose that the optimal plan is such that the allocations converge to the

interior steady state growth path. Then, the optimal plan can be decentralized with zero

taxes on savings, τa
t (y) = 0, for all t and y, and taxes on profits which converge to zero

τ
p
t → 0 as t→ ∞.

Proposition 3 states that the tax on robots should asymptotically converge to zero.

This result is reminiscent of the celebrated Chamley-Judd result, and stands in sharp

contrast with the findings of Jones, Manuelli, and Rossi (1997) and Slavı́k and Yazici

(2014). The reason why those authors find a role for steady-state taxes on capital

is because they ignore technical progress. The proposition shows that, once skill-

biased technical change is incorporated into the analysis, the steady-state supply of

labor by routine agents should be zero. Because relative wages stop being relevant,

there is no advantage to using production distortions in the provision of incentives.

As a result, the optimal tax on robots should be zero.
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3.3 Implementation

3.4 Quantitative analysis

In this section, we solve the planning problem and quantify the effects of advances

in automation for the optimal taxation of robots and income.

The status-quo economy We calibrate a status-quo economy to match salient fea-

tures on the U.S. economy. We assume that a time period corresponds to 30 years,

and set β = 0.3083, which are corresponds to a 4% yearly real interest rate. We use

assume that ψ(l) = ζl1+ν/(1+ ν), and set ν = 1/0.75 and set ζ such that the average

labor average labor supply in the original steady state is 1/3.

We assume that the cross-sectional distribution of θ, λ(θ), is a Logistic distribu-

tion with parameters µ ∈ R and σ ∈ R++:

λ(θ) =
exp{−(x− µ)/σ}

σ (1 + exp{−(x− µ)/σ})2 .

This is equivalent to a model in which we instead assume that the agent has a

occupation-specific cost to acquire skills, and these costs are distributed according

to a Gumbel distribution. This parametrization has been widely used in the applied

literature on occupation choice, among other models with binary choices, e.g. John-

son and Keana (2013), and Roys and Taber (2017).

We model the taxation of labor earnings as in Heathcote, Storesletten, and Vi-

olante (2017):

Ty
t (yt(θ)) = yt(θ)− λtyt(θ)

1−γt

and we model the social security system as in Guvenen and Smith (2014)

To
t+1(yt(θ)) = −Yt ×



0.9 yt(θ)
Yt

, if yt(θ)
Yt
≤ 0.3

0.27 + 0.32
(

yt(θ)
Yt
− 0.3

)
, if 0.3 < yt(θ)

Yt
≤ 2

0.81 + 0.15
(

yt(θ)
Yt
− 2
)

, if 2 < yt(θ)
Yt
≤ 4.1

1.13, if 4.1 < yt(θ)
Yt
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where Yt ≡
´

Θ λ(θ)yt(θ)dθ. Or we could take a simplified version where we just

take

To
t+1(yt(θ)) = −Yt

[
0.27 + 0.32

(
yt(θ)

Yt
− 0.3

)]
.

We normalize A to one, and set δ = 0.9575 which corresponds to a 10% yearly

depreciation of robots.

Mirrleesian optimal taxation Figure 10 displays the optimal policy solution. The

properties of this solution are similar to those of the static model. The maximum

value of the optimal robot tax is 14 percent, which is higher than the maximum value

attained in the static model (9 percent). The tax rate on robots converges to zero as

the degree of automation, defined as mt = Xt/ (Xt + πrlr,t), converges to one.

Technical progress induces a fall over time in the relative productivity of routine

workers. For this reason, it is optimal for the number of routine hours of work to

decline over time. As routine hours fall, there is less incentive for the planner to tax

robots to distort the ratio of wages and loosen the incentive constraint of non-routine

workers. As routine hours converge to zero, the optimal robot tax converges to zero.

This mechanism is also present in our static model.

4 Relation to the public finance literature

In this section we discuss how our results relate to classical results on production

efficiency and taxation of capital in the public finance literature.

Relating our results to Diamond and Mirrlees (1971) Our results stand in sharp

contrast to the celebrated Diamond and Mirrlees (1971) result that an optimal tax sys-

tem should ensure efficiency in production and therefore leave intermediate goods

untaxed. In our framework, this property would imply that the tax on robots should

be zero.
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At the heart of the failure of the Diamond and Mirrlees (1971) intermediate-good

theorem in our model is the fact that the government cannot discriminate between

the two types of workers. If tax functions could be worker specific, production ef-

ficiency would be recovered in our model. To see this result, consider type-specific

tax functions of the form used by Heathcote et al. (2018) with different tax levels, λr

and λn, but with the same progressivity parameter

Ti (wili) = wili − λi (wili)
1−γ .

In this case, household optimality requires

−ul(cj, lj)lj

uc(cj, lj)
= λj (1− γ)

(
wjlj

)1−γ , and cj = λj
(
wjlj

)1−γ .

Given that the planner can choose λr and λn to target each marginal rate of sub-

stitution independently, the only constraints faced by the planner are the resource

constraint (20) which can be written as

πrcr + πncn + G ≤ τx + α

α(1 + τx)1/α

αA1/α(1− α)
1−α

α

φ
1−α

α

πnln + φπrlr,

and the implementability conditions

uc(cj, lj)cj +
ul(cj, lj)lj

1− γ
= 0, for j = r, n.

These three conditions are necessary and sufficient for an equilibrium. Recall that

the term (τx + α) /α(1 + τx)1/α ≤ 1, and is strictly less than one if τx 6= 0.

The robot tax only affects directly the resource constraint and not the imple-

mentability conditions. Since the robot tax does not interfere with incentives, it

is chosen to maximize output for given levels of hours worked. This objective is

achieved by not distorting production, setting τx = 0.

When the tax system requires that all workers face the same income-tax func-

tion (λr = λn), the planner must satisfy the following additional implementability
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constraint
cr

cn
=

(
wrlr
wnln

)1−γ

. (46)

The value of τx no longer appears only in the resource constraint; it also appears

in equation (46) because the wage ratio is a function of τx. To relax restriction (46),

it might be optimal to choose values of τx that are different from zero. This result

depends crucially on the fact that different labor types interact differently with the

intermediate good, which means that distorting the use of intermediate goods affects

in different ways the wage rates of routine and non-routine workers. If the produc-

tion function was weakly separable in labor types and intermediate inputs, the wage

ratio would be independent of the usage of intermediate inputs and production ef-

ficiency would be optimal. In our model, robots are substitutes of routine workers

and complements of non-routine workers. A tax on robots decreases the wage rate of

non-routine workers and increases the wage rate of routine workers. This property

implies that it can be optimal to use robot taxes.

Relating our results to Atkinson and Stiglitz (1976) Our result that in the Mir-

rleesian optimal taxation problem production efficiency is not optimal stands in con-

trast with the well-known result in Atkinson and Stiglitz (1976) that, for preferences

that are separable in commodities and leisure, uniform commodity taxation is opti-

mal. Since uniform taxation can be interpreted as production efficiency, their result

seems to contradict ours.

The difference between our results and those of Atkinson and Stiglitz (1976) stem

from the determinants of worker productivity. In Atkinson and Stiglitz (1976), work-

ers’ productivities are exogenous. In our setup workers’ productivity are endoge-

nous so, it may be optimal to deviate from production efficiency to induce changes

in those productivities. In particular, by taxing robots the Mirrleesian planner is able

to change pre-tax wages through general-equilibrium effects, relaxing the incentive
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constraint, and improving welfare.33

Naito (1999) shows that uniform taxation may not be optimal in an economy

in which the intensity of high- and low-skilled workers in production varies across

goods. This form of production non-separability implies that commodities interact

differently with different agent types and, as a result, it might be optimal to deviate

from uniform commodity taxation.34 Similarly, in our model the assumption that

production is not separable in the use of robots and the two labor types is key to

generate deviations from production efficiency.

The intuition for the importance of general-equilibrium effects of taxation on

wages and prices is the same we emphasized in our discussion of proposition 1.

Because the planner does not know the type of the agent and only observes income,

it is restricted to use incentive-compatible tax systems. Since different types interact

differently with the intermediate good, distorting production decisions may help in

the screening process. To see this property, it is useful to write the incentive con-

straint as: u(ci, li) ≥ u
(
cj, wjlj/wi

)
. Crucially, this incentive constraint involves the

wage ratio. Whenever the taxation of intermediate goods affects this ratio, produc-

tion efficiency may no longer be optimal. When intermediate goods are not separable

in production from the two labor types, taxing intermediate goods affects the wage

ratio and it might be optimal to distort production.

The importance of general-equilibrium effects of taxes on wages in shaping the

optimal tax policy was originally emphasized by Stiglitz (1982) and Stern (1982) in

a Mirrlees (1971) environment. Mirrlees assumes that production is linear in labor,

so taxation does not affect wages through general-equilibrium effects. Stiglitz (1982)

and Stern (1982) show that when production is not linear in labor, the optimal tax

33An important assumption is that when workers imitate others, they retain their productivity. See
Scheuer and Werning (2016) for a discussion.

34Jacobs (2015) shows that production efficiency is generally not optimal in a model where com-
modity prices are exogenous but wages are not. In his model, goods are produced with commodities
and labor according to production functions that are worker specific. Taxation of commodities has a
differential impact on the marginal productivities and wages of the different workers.
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schedule is more regressive than in the Mirrlees model and the top marginal income

tax is negative instead of zero.35 The reason for this result is that it is optimal to

encourage high-skilled workers to exert more effort so as to reduce their relative

wages, making their incentive constraint easier to satisfy.

5 Conclusions

Our analysis suggests that without changes to the current U.S. tax system, a sizable

fall in the costs of automation would lead to a massive rise in income inequality.

Even though routine workers keep their jobs, their wages fall to make them compet-

itive with the possibility of automating production.

Income inequality can be reduced by raising the marginal tax rates paid by high-

income individuals and by taxing robots to raise the wages of routine workers. But

this solution involves a substantial efficiency loss. A Mirrleesian optimal income tax

can reduce inequality at a smaller efficiency cost than the variants of the U.S. tax

system discussed above, coming close to the levels of social welfare obtained in the

first-best allocation.

An alternative, less ambitious, approach is to amend the tax system to include a

transfer that is independent of income. The desirability of this type of universal basic

income system has been debated since Thomas More proposed it in his 1516 book,

Utopia. With this transfer in place, it is optimal in our model to tax robots for values

of the automation cost that lead to partial automation. For values of the automation

cost that lead to full automation, it is not optimal to tax robots. Routine workers

lose their jobs and live off government transfers, just like in Kurt Vonnegut’s “Player

Piano.”
35Rothschild and Scheuer (2013) generalize the results of Stern (1982) and Stiglitz (1982) to an envi-

ronment in which occupational choice is endogenous and there is a continuous distribution of agent
types.
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A Appendix

A.1 The first-best allocation
We define the first-best allocation in this economy as the solution to an utilitarian welfare
function, absent informational constraints. This absence implies that the planner can per-
fectly discriminate among agents and enforce any allocation. The optimal plan solves the
following problem

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ

(πnln)
α − φ

ˆ m

0
xidi, [µ],

ˆ 1

m
nidi = πrlr, [η].

The first-order conditions with respect to ni and xi are

µ(1− α)A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ −1

(πnln)
α nρ−1

i = η, ∀i ∈ (m, 1]

(1− α)A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ −1

(πnln)
α xρ−1

i = φ, ∀i ∈ [0, m].

The first equation implies that the marginal productivity of routine labor should be constant
across the activities that use routine labor. This property means that (1−m) ni = πrlr for
i ∈ (m, 1] and ni = 0, otherwise. The same property applies to robots used in the activities
where they are used, xi = x for i ∈ [0, m] and xi = 0, otherwise.

To characterize the optimal allocations we replace ni and xi in the planner’s problem,
which can be rewritten as

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ

(πnln)
α − φmx, [µ].

The first-order conditions with respect to x and m are, respectively,

(1− α)A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ −1

Nα
n xρ−1 = φ,

1− α

ρ
A
[

mxρ + (1−m)

(
πrlr

1−m

)ρ] 1−α
ρ −1

Nα
n

[
xρ − (1− ρ)

(
πrlr

1−m

)ρ]
= φx.
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The ratio of these two equations implies that if automation is positive, m ∈ (0, 1), then
x = πrlr/(1−m). Using this condition, we obtain

W = max ωrπr [u(cr, lr) + v(G)] + ωnπn [u(cn, ln) + v(G)] .

πrcr + πncn + G ≤ A
(

πrlr
1−m

)1−α

(πnln)
α − φm

πrlr
1−m

, [µ].

The first-order condition with respect to the level of automation implies that

(1− α)A
1

(1−m)2−α
(πrlr)

1−α (πnln)
α − φ

πrlr
(1−m)2 = 0⇔ m = 1−

[
φ

A(1− α)

]1/α πrlr
πnln

,

provided that m is interior. Then,

m = max

{
1−

[
φ

A(1− α)

]1/α Nr

Nn
, 0

}
.

Furthermore, the first-order conditions with respect to cr, cn, lr, ln, and G are

ωruc(cr, lr) = µ,

ωnuc(cn, ln) = µ,

ωrul(cr, lr) ≥
µ

πrlr
(1− α)(1−m)Y,

ωnul(cn, ln) = µ
αY

πnln
,

g′(G) = µ.

The first-order condition with respect to Nr is presented with inequality, because the con-
straint Nr ≥ 0 may bind when automation costs are low. The combination of the first two
equations implies that

ωruc(cr, lr) = ωnuc(cn, ln).

The optimal marginal rates of substitution are given by the combination of the marginal
utility of consumption and leisure for each individual

ul(cr, lr)
uc(cr, lr)

≥ (1− α)(1−m)
Y

πrlr
,

ul(cn, ln)

uc(cn, ln)
= α

Y
πnln

.

Finally, from the first-order conditions for G and cr it follows that

g′(G) = ωru′(cr). (47)
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A.2 Necessity and sufficiency in the static model
Household optimality implies that the utility associated with the bundle of consumption
and income assigned to agent j, {cj, lj}, must be at least as high as the utility associated
with any other bundle {c, l} that satisfies the budget constraint c ≤ wjl − T(wjl), implying
that u(cj, lj) ≥ u(c, l). In particular, routine workers must prefer their bundle, {cr, lr}, to
the bundle that they would get if they pretended to be non-routine workers while keeping
the routine wage, {cn, wnln/wr}. Similarly, non-routine workers must prefer their bundle,
{cn, ln}, to the bundle they would get if they pretended to be routine workers, {cr, wrlr/wn}.
These requirements correspond to the two IC constraints, (21), and (22), so these conditions
are necessary.

We show in the Appendix that equation (20) is necessary by combining the first-order
conditions to the firms’ problems with the resource constraint, (11). In addition, we show
that conditions (20), (21), and (22), are also sufficient. To see that equations (21) and (22)
summarize the household problem, note that it is possible to choose a tax function such that
agents prefer the bundle

{
cj, lj

}
to any other bundle. For example, the government could

choose a tax function that sets the agent’s after-tax income to zero for any choice of wjl
different from wjlj, j = r, n. These results are summarized in the following proposition.

Lemma 4. Equations (20), (22) and (21) characterize the set of implementable allocations. These
conditions are necessary and sufficient for a competitive equilibrium.

In an equilibrium, robot producers set the price of robots equal to their marginal cost

pi = φ. (48)

Optimality for final goods producers implies that

xi =

{
πr lr
1−m , i ∈ [0, m],
0, otherwise

(49)

ni =

{
πr lr
1−m , i ∈ (m, 1],
0, otherwise

(50)

m = max

{
1−

[
(1 + τx)φ

(1− α)A

]1/α πrlr
πnln

, 0

}
, (51)

Y = A

[ˆ m

0
xρ

i di +
ˆ 1

m
nρ

i di

] 1−α
ρ

(πnln)
α , (52)

wr = (1− α)(1−m)
Y

πrlr
, (53)
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wn = α
Y

πnln
. (54)

The resource constraint is

πrcr + πncn + G ≤ Y−
ˆ m

0
φxi, (55)

We can let equation (48) define the price of robots, equation (49) define xi, equations (50),
(51) and (52) determine ni, m, and Y, respectively. Assuming that m is interior, the wage
equations (53) and (54) can be written as (14) and (15). These equations can be used to solve
for the equilibrium wage rates. Combining the results above, we can write the resource
constraint as

πrcr + πncn + G ≤ α
A1/α(1− α)

1−α
α

[(1 + τx)φ]
1−α

α

τx + α

α(1 + τx)
πnln + φπrlr.

Replacing the wage rates we can write

πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+

πrwrlr
1 + τx

. (56)

This derivation makes it clear that the resource constraint (56) summarize the equilibrium
conditions of the production side of the economy.

Household optimality requires that

u
(
cj, lj

)
≥ u (c, l) , ∀(c, l) : c ≤ wjl − T(wjl).

The following incentive constraint are necessary constraints

u (cn, ln) ≥ u
(

cr,
wr

wn
lr

)
u (cr, lr) ≥ u

(
cn,

wn

wr
ln

)
.

These are also sufficient conditions, because the planner can set the tax schedule T(·) such
that for all Y 6∈ {Yn, Yr} the allocation is worse for both agents than their respective alloca-
tion. This is done by setting

T(y) = y−max
{

c|u(ci, li) ≥ u
(

c,
y
wi

)
, for i = r, n

}
.

Since the government can choose an arbitrary tax function, it is only bound by the in-
centive constraints which characterize the informational problem. This property means that
the income tax function that is assumed here to implement the optimal allocation is without
loss of generality. Any other implementation would at least have to satisfy the same two
incentive constraints.
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A.3 Proof of proposition 1
The allocations solve the original optimization problem, or equivalently they solve

W(τx) = max πrωru(cr, lr) + πnωnu(cn, ln) + v(G)

subject to

[ηrπr] u(cr, lr) ≥ u
(

cn,
wn

wr
ln

)
,

[ηnπn] u(cn, ln) ≥ u
(

cr,
wr

wn
lr

)
,

[µ] πrcr + πncn + G ≤ πnwnln
τx + α

α(1 + τx)
+ πr

wrlr
1 + τx

.

Assume that the routine IC constraint does not bind, then ηr = 0. The envelope condition is

W ′(τx) = −ηnπnul

(
cr,

wr

wr
lr

)
d log (wr/wn)

d log(1 + τx)

1
1 + τx

wrlr
wn

+µ

 πnwnln
τx+α

α(1+τx)2

[
d log wn

d log(1+τx)
+ 1−α

τx+α

]
+πr

wr lr
(1+τx)2

[
d log wr

d log(1+τx)
− 1
]  .

Using the wages we have that

wr = φ(1 + τx)⇒
d log wr

d log (1 + τx)
= 1,

wn = α
A1/α (1− α)

1−α
α

[(1 + τx)φ]
1−α

α

⇒ d log wn

d log (1 + τx)
= −1− α

α
,

wr

wn
=

[(1 + τx)φ]
1
α

αA1/α (1− α)
1−α

α

⇒ d log wr/wn

d log (1 + τx)
=

1
α

.

Plugging these into the envelope condition we obtain

W ′(τx) = −ηnπnul

(
cr,

wr

wn
lr

)
1

α (1 + τx)

wrlr
wn

+ µπnwnln
τx + α

α(1 + τx)2

[
−1− α

α
+

1− α

τx + α

]
=

1
α (1 + τx)

[
−ηnul

(
cr,

wr

wn
lr

)
wrlr
wn
− µπnwnln

τx

1 + τx

1− α

α

]
Because µ > 0 then if τx ≤ 0 we obtain that

W ′(τx) > 0,
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so that the planner always improves by marginally increasing τx. Furthermore, since opti-
mality implies that W ′(τx) = 0 then the optimal tax on robots verifies that

τx

1 + τx
=

α

1− α

ηn

(
−ul

(
cr, wr

wn
lr
)

wr lr
wn

)
µwnln

The first order condition with respect to lr implies that

−ηn

µ
ul

(
cr,

wr

wr
lr

)
wrlr
wn

=
ω̃rπrul (cr, lr) lr + πrwr lr

1+τx

πn
=

πrφlr
πn

[
1− ω̃r (−ul (cr, lr))

φ

]
where ω̃r = ωr/µ. Replacing this in the optimal condition for τx we obtain

τx

1 + τx
=

α

1− α

πrφlr
πnwnln

[
1− ω̃r (−ul (cr, lr))

φ

]
.

A.3.1 The full automation case (m = 1, lr = 0)

If the optimal plan features lr = 0 then it must be that ln > 0. This result implies that ψ = 0.
From the envelope condition we can see that

W ′(τx) = −
µ

α (1 + τx)
πnwnln

τx

1 + τx

1− α

α
= 0⇔ τx = 0. (57)

A.4 Model with simple taxes
The competitive equilibrium for this economy is characterized by the following set of equa-
tions

cn = λ (wnln)
1−γ = λ

(
αY
πr

)1−γ

, (58)

−ul(cn, ln)ln

uc(cn, ln)
= λ (1− γ) (wnln)

1−γ , (59)

cr = λ (wrlr)
1−γ = λ

(
(1− α)(1−m)Y

πr

)1−γ

, (60)

−ul(cr, lr)lr
uc(cr, lr)

= λ (1− γ) (wrlr)
1−γ , (61)

m = max

{
1−

(
φ(1 + τx)

(1− α)A

)1/α πrlr
πnln

, 0

}
, (62)

Y =

{
A (πrlr)

1−α (πnln)
α , if m = 0

wn
α πnln, if m > 0

}
(63)

56



πncn + πrcr + G ≤
{

A (πrlr)
1−α (πnln)

α , if m = 0
wnπnln

τx+α
α(1+τx)

+ wrπr lr
1+τx

, if m > 0

}
, (64)

where wr and wn are given by (15) and (14), respectively.
Taking the ratio between equations (58) and (60), we can see that a necessary condition is

cr

cn
=

[
(1− α)(1−m)

α

πn

πr

]1−γ

⇔ cr = cn

[
(1− α)

α

πn

πr

(
φ(1 + τx)

(1− α)A

)1/α πrlr
πnln

]1−γ

. (65)

The conditions (??), (??), (??) and (20) are necessary and sufficient for an interior au-
tomation equilibrium in terms the allocations {cr, lr, cn, ln, G} and the tax parameters {τx, γ}.
They are necessary because they follow from the equilibrium conditions. They are sufficient
because, given a solution for {cr, lr, cn, ln, G} and {τx, γ} which satisfies the constraints, the
other remaining conditions can be satisfied by the choice of the remaining variables. In par-
ticular, equations (15) and (14) can be satisfied by the choice of wn and wr, respectively. We
can set λ such that

λ =
1

(1− γ) (wnln)
1−γ

−ul(cn, ln)ln

uc(cn, ln)
,

which satisfies (59). This choice of λ combined with (??) also satisfies (58). Choosing λ in this
way and combined with (??) implies that (61) is satisfied. Satisfying (61) with this choice of
λ also implies that (60) is satisfied. The conditions (62) and (63) are used to solve for m and
Y. The condition (64) is the same as (20).

We now derive equation (??). The Ramsey planner solves the following problem

max ωrπru(cr, lr) + ωnπnu(cn, ln) + v(G),

subject to [
η

cr

]
cr = cn

 (1− α)
(

φ(1+τx)
(1−α)A

)1/α lr
ln

α


1−γ

[λr] uc(cr, lr)cr +
ul(cr, lr)lr

1− γ
= 0,

[λn] uc(cn, ln)cn +
ul(cn, ln)ln

1− γ
= 0,

[µ] πrcr + πncn + G ≤ wnπnln
τx + α

α(1 + τx)
+ φπrlr.
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The first-order condition with respect to τx is given by

0 =
η

cr
cn

 (1− α)
(

φ(1+τx)
(1−α)A

)1/α lr
ln

α


1−γ

1− γ

α(1 + τx)
+ µ

[
dwn

dτx
πnln

τx + α

α(1 + τx)
+ wnπnln

1− α

α(1 + τx)2

]

0 =
η

cr
cr

1− γ

α(1 + τx)
+ µ

wnπnln

α(1 + τx)2

[
d log wn

d log (1 + τx)
(τx + α) + 1− α

]
0 =

η

cr
cr (1− γ) + µ

wnπnln (1− α)

(1 + τx)

[
−τx + α

α
+ 1
]

η (1− γ) = µwnπnln
1− α

α

τx

1 + τx
⇔ τx

1 + τx
=

α

1− α

η (1− γ)

µwnπnln
.

A.5 Simple taxes with a lump-sum transfer
The conditions are necessary as they follow from manipulations of the necessary conditions
for an equilibrium. Sufficiency is established as follows. Let {cr, lr, cn, ln, G} and {τx, γ, ω}
denote some allocation that satisfies the conditions

uc(cr, lr) (cr −Ω) +
ul(cr, lr)lr

1− γ
= 0,

uc(cn, ln) (cn −Ω) +
ul(cn, ln)ln

1− γ
= 0,

cr −Ω = (cn −Ω)

[
(1− α)

α

πn

πr

(
φ(1 + τx)

(1− α)A

)1/α πrlr
πnln

]1−γ

,

πrcr + πncn + G ≤ wnπnln
τx + α

α(1 + τx)
+

wrπrlr
1 + τx

.

First, let us set wn and wr according to their definitions (14) and (15), respectively. Now set
Y, λ, Ω and m such that

Y =
πnwnln

α
,

λ =
−ul(cn, ln)ln

uc(cn, ln)(1− γ)(wnln)1−γ
,

m = max

{
1−

[
φ(1 + τx)

A(1− α)

]1/α πrlr
πnln

, 0

}
.
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and note that

Y =
πnwnln

α
=

πrwrlr
α

πnwnln

πrwrlr
= πrwrlr

 1

(1− α)
[

φ(1+τx)
A(1−α)

]1/α
πr lr
πn ln

 =
πrwrlr

(1− α) (1−m)
.

To show that the conditions for optimality of non-routine households are satisfied, we note
that

uc(cn, ln) (cn −Ω) +
ul(cn, ln)ln

1− γ
= 0

cn = − ul(cn, ln)ln

uc(cn, ln) (1− γ)
+ Ω

and by definition of λ we obtain

cn = λ(wnln)
1−γ + Ω.

Now to show that the conditions for optimality of the routine household are satisfied, we
note that the no-discrimination constraint implies that

cr −Ω = (cn −Ω)

(
(1−α)

πr

(
φ(1+τx)
(1−α)A

)1/α
πr lr
πn ln

)1−γ

(
α

πn

)1−γ
= (cn −Ω)

(
(1−α)(1−m)Y

πr

)1−γ

(
αY
πn

)1−γ

cr −Ω = λ(wnln)
1−γ

(
(1−α)(1−m)Y

πr

)1−γ

(
αY
πn

)1−γ
= λ(wrlr)1−γ

which shows that the budget constraint is satisfied. Furthermore, from the implementability
constraint

uc(cr, lr) (cr −Ω) +
ul(cr, lr)lr

1− γ
= 0

⇔ cr −Ω = − ul(cr, lr)lr
uc(cr, lr) (1− γ)

and using what we have found above

− ul(cr, lr)lr
uc(cr, lr) (1− γ)

= λ(wrlr)1−γ.

which shows that the budget marginal condition is also satisfied.
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The problem of the government is

max ωrπru(cr, lr) + ωnπnu(cn, ln) + v(G),

subject to [
λj
]

uc(cj, lj) (cr −Ω) +
ul(cj, lj)lj

1− γ
= 0,

[
η

cr

]
cr −Ω = (cn −Ω)

(
(1−α)

πr

(
φ(1+τx)
(1−α)A

)1/α
πr lr
πn ln

)1−γ

(
α

πn

)1−γ
,

[φ] u
(
cj, lj

)
≥ u (Ω, 0)

[µ] πrcr + πncn + G ≤ wnπnln
τx + α

α(1 + τx)
+ φπrlr.

The first order condition with respect to τx is given by

0 =
η

cr
(cn −Ω)

(
(1−α)

πr

(
φ(1+τx)
(1−α)A

)1/α
πr lr
πn ln

)1−γ

(
α

πn

)1−γ

1− γ

α

1
1 + τx

+µ

[
dwn

dτx
πnln

τx + α

α(1 + τx)
+ wnπnln

1− α

α(1 + τx)2

]

η
1− γ

α

(
cr −Ω

cr

)
= µ

wnπnln (1− α)

(1 + τx)
τx

τx

1 + τx
=

α

1− α

η (1− γ)

µwnπnln

(
cr −Ω

cr

)
.

A.6 Simple Taxes with lump-sum transfers - The household’s prob-
lem with regressivity

In this section of the appendix we discuss the problem of the household when the income
tax function is regressive. Under the proposed tax function with a lump-sum transfer, a
household which has a wage rate w solves the following problem

max u(c, l) subject to c ≤ λ (wl)1−γ + Ω.

For simplicity assume that preferences are given by

u(c, l) = log c− ζ
l1+ν

1 + ν
,

60



for ζ, ν > 0. The solution to this problem satisfies the following conditions:

cζlν = (1− γ) λw1−γl−γ, (67)

c = λ (wl)1−γ + Ω. (68)

Note that if the tax system is regressive, γ < 0, and lump-sum transfers are positive, Ω > 0,
then as l → 0 both the right- and left-hand sides of (67) converge to zero. As a result, a corner
solution may be the optimal choice.

This case actually happens in our solutions to the simple income taxes with lump-sum
transfers problem. Indeed, when the routine worker drops out of the labor force, it is optimal
to set the lump-sum transfer up to a level in which the non-routine worker is exactly indif-
ferent between the corner solution, with c = Ω and l = 0, and the interior solution, with
c > Ω and l > 0. This is easiest seen in the following figure. In this figure we plot both the
budget constraint for this case, and the indifference curve for the non-routine worker with
the highest associated level of utility.

A.7 Necessity and sufficiency in the dynamic model
TO BE WRITTEN

A.8 Proof of lemma 1
First, note that the extensive margin incentive compatibility constraints can be equivalently
written as

Ut(θ) ≥ Ut(θ
′) +

(
θ′ − θ

)
st(θ

′) (69)

for all t and θ, θ′ ∈ Θ.
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First, suppose that (69) are satisfied. Then, take θ, θ′ ∈ Θr,t, i.e. such that st(θ) = st(θ′) =
0. As a result, those conditions imply

Ut(θ) ≥ Ut(θ
′)

Ut(θ
′) ≥ Ut(θ)

which is equivalent to Ut(θ) = Ut(θ′). This must hold for all θ, θ′ ∈ Θr,t. Let’s define
Ur,t = Ut(θ) for θ ∈ Θr. Next, let’s take θ, θ′ ∈ Θn,t. Then,

Ut(θ) ≥ Ut(θ
′) + (θ′ − θ)

Ut(θ
′) + (θ′ − θ) ≥ Ut(θ)

which implies that for all θ, θ′ ∈ Θn,t we have Ut(θ) = Ut(θ′) + (θ′ − θ). Then, for some
θ′ ∈ Θn,t we can define Un,t = Ut(θ′) + θ′, and obtain Ut(θ) = Un,t − θ for all θ ∈ Θn,t.
Finally, define θ∗t ≡ Un,t −Ur,t. This implies that for all θ < θ∗t we have

Un,t − θ > Ur,t (70)

which implies that st(θ) = 1. For all θ > θ∗ we have

Un,t − θ < Ur,t (71)

which implies that st(θ) = 0.
To show the reverse implication suppose that the conditions in the lemma hold. Then,

for all θ ∈ Θn,t we have

Ut(θ) = Un,t − θ = Ut(θ
′) + θ′ − θ, ∀θ′ ∈ Θn,t

Ut(θ) = Un,t − θ ≥ Un,t − θ∗ = Ur,t = Ut(θ
′), ∀θ′ ∈ Θr,t.

Instead, if θ ∈ Θr,t, then

Ut(θ) = Ur,t = Ut(θ
′), ∀θ′ ∈ Θr,t

Ut(θ) = Ur,t = Un,t − θ∗ ≥ Un,t − θ = Ut(θ
′) + θ′ − θ, ∀θ′ ∈ Θn,t.

As a result, the allocation is extensive margin incentive compatible, i.e. it satisfies (69).
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A.9 Proof of lemma 2
With the simplification provided by lemma 1, we can write the planning problem as follows:

max
∞

∑
t=0

βt

[
Un,t

ˆ θ∗t

−∞
ωt(θ)λ(θ)dθ + Ur,t

ˆ ∞

θ∗t

ωt(θ)λ(θ)dθ −
ˆ θ∗t

−∞
ωt(θ)λ(θ)θdθ

]

[ηi
r,t(θ)] Un,t ≥ Ur,t + ψ (lt(θ))− ψ

(
Fr,t

Fn,t
lt(θ)

)
, ∀t ≥ 1, θ > θ∗t

[ηi
n,t(θ)] Ur,t ≥ Un,t + ψ (lt(θ))− ψ

(
Fn,t

Fr,t
lt(θ)

)
, ∀t ≥ 1, θ < θ∗t

[ξt] θ∗t = Un,t −Ur,t, ∀t ≥ 1

[ηe
n,t(θ)] Un,t = u(cy

t (θ))− ψ(lt(θ)) + v(Gt) + β[u(co
t+1(θ)) + v(Gt+1)], ∀t ≥ 1, θ < θ∗t

[ηe
r,t(θ)] Ur,t = u(cy

t (θ))− ψ(lt(θ)) + v(Gt) + β[u(co
t+1(θ)) + v(Gt+1)], ∀t ≥ 1, θ > θ∗t

[µt] ∑
a=y,o

ˆ
θ

ca
t (θ)λ(θ)dθ + Gt + φt [Xt+1 − (1− δ) Xt] ≤ F (Xt, Nr,t, Nn,t) , ∀t ≥ 1

where in parenthesis we have written the Lagrange multipliers for each constraint. We will
prove this result by means of a contradiction. For a given candidate solution, and for each
t ≥ 1, let us define j+t ≡ arg maxj∈{r,n} Fj,t and j−t ≡ arg minj∈{r,n} Fj,t.

Take first the occupation j+t and suppose there exists θ, θ′ ∈ Θj+t ,t such that lt(θ) 6= lt(θ′).
Then, define lj+t

≡ infθ∈Θj+t ,t
lt(θ). Note that, because ψ′′ > 0, then

ψ(lj+t
)− ψ

(
Fj+t ,t

Fj−t ,t
lj+t

)
> ψ(lt(θ))− ψ

(
Fj+t ,t

Fj−t ,t
lt(θ)

)
.

This in turn implies that ηi
j+t ,t(θ) = 0 for all θ such that lt(θ) > lj+t ,t. Suppose first that lj+t ,t <

lt(θ) for all θ ∈ Θj+t ,t. As a result, the first order conditions with respect to the allocations are

uc
(
cy

t (θ)
)

ηe
j+t ,t(θ) = µtλ(θ)

βuc (co
t+1(θ)) ηe

j+t ,t(θ) = µt+1λ(θ)

ψl(lt(θ))η
e
j+t ,t(θ)−

ˆ
Θj−t ,t

ψl

(
Fj−t ,t

Fj+t ,t
lt(θ̂)

)
ηi

j−t ,t(θ̂)lt(θ̂)dθ̂

d
Fj−t ,t

Fj+t ,t

dNj+t ,t
λ(θ) = µtFj+t ,tλ(θ)
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which implies that we can solve for cy
t (θ), co

t+1(θ), lt(θ) for all θ with the following conditions

uc
(
cy

t (θ)
)

βuc
(
co

t+1(θ)
) =

µt

µt+1

ψl(lt(θ))

uc(c
y
t (θ))

=

µtFj+t ,t +
´

Θj−t ,t
ψl

(
Fj−t ,t

Fj+t ,t
lt(θ̂)

)
ηi

j−t ,t(θ̂)lt(θ̂)dθ̂
d

F
j−t ,t

F
j+t ,t

dNj+t ,t

µt

Uj+t ,t = u(cy
t (θ))− ψ(lt(θ)) + v(Gt) + β[u(co

t+1(θ)) + v(Gt+1)]

In turn, these three conditions imply that the allocations cy
t (θ), co

t+1(θ), and lt(θ) must be
constant across θ. This is a contradiction of our original assumption.

If there exists θ ∈ Θj+t ,t such that lt(θ) = lj+t ,t, then we must modify those consitions.
Define Θ1

j+t ,t = {θ ∈ Θj+t ,t : lt(θ) = lj+t ,t} and Θ0
j+t ,t = Θj+t ,t − Θ1

j+t ,t. It is still true that

ηi
j+t ,t(θ) = 0 for all θ ∈ Θ0

j+t ,t. The first order conditions now become:

uc
(
cy

t (θ)
)

ηe
j+t ,t(θ) = µtλ(θ), ∀θ ∈ Θj+t ,t

βuc (co
t+1(θ)) ηe

j+t ,t(θ) = µt+1λ(θ), ∀θ ∈ Θj+t ,t

ψl(lt(θ))η
e
j+t ,t(θ) =

[
µtFj+t ,t + Γj+t ,t

]
λ(θ), ∀θ ∈ Θ0

j+t ,t

ψl(lt(θ))

ηe
j+t ,t(θ) + ηi

j+t ,t(θ)

1−
ψl

(
Fj+t ,t

Fj−t ,t
lt(θ)

)
Fj+t ,t

Fj−t ,t

ψl (lt(θ))


 =

[
µtFj+t ,t + Γj+t ,t

]
λ(θ), ∀θ ∈ Θ1

j+t ,t

where Γj+t ,t ≡ −
´

θ∈Θ1
j+t ,t

ψl

(
Fj+t ,t

Fj−t ,t
lt(θ̂)

)
ηi

j+t ,t(θ̂)lt(θ̂)dθ̂
d

F
j+t ,t

F
j−t ,t

dNj+t ,t
−
´

Θj−t ,t
ψl

(
Fj−t ,t

Fj+t ,t
lt(θ̂)

)
ηi

j−t ,t(θ̂)lt(θ̂)dθ̂
d

F
j−t ,t

F
j+t ,t

dNj+t ,t
.

As a result, we obtain the following conditions

uc
(
cy

t (θ)
)

βuc
(
co

t+1(θ)
) =

µt

µt+1
, ∀θ ∈ Θj+t ,t

ψl(lt(θ))

uc(c
y
t (θ))

=
µtFj+t ,t + Γj+t ,t

µt
, ∀θ ∈ Θ0

j+t ,t

ψl(lt(θ))

uc(c
y
t (θ))

ηe
j+t ,t(θ) + ηi

j+t ,t(θ)

1−
ψl

(
F

j+t ,t
F

j−t ,t
lt(θ)

)
F

j+t ,t
F

j−t ,t

ψl(lt(θ))


ηe

j+t ,t(θ)
=

µtFj+t ,t + Γj+t ,t

µt
, ∀θ ∈ Θ1

j+t ,t

Uj+t ,t = u(cy
t (θ))− ψ(lt(θ)) + v(Gt) + β[u(co

t+1(θ)) + v(Gt+1)], ∀θ ∈ Θj+t ,t
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If ηi
j+t ,t(θ) = 0, again these conditions imply that the allocations must be the same. Otherwise,

note that because Fj+t ,t/Fj−t ,t > 1 and ηe
j+t ,t(θ), ηi

j+t ,t(θ) > 0 then the these marginal conditions
imply that

ψl(lt(θ))

uc(c
y
t (θ))

<
ψl(lt(θ′))

uc(c
y
t (θ
′))

(72)

for θ ∈ Θ0
j+t ,t and θ′ ∈ Θ1

j+t ,t. However, the assumption that lt(θ) > lt(θ′) combined with the
fact that

uc
(
cy

t (θ)
)

βuc
(
co

t+1(θ)
) =

uc
(
cy

t (θ
′)
)

βuc
(
co

t+1(θ′)
)

and
u(cy

t (θ))− ψ(lt(θ)) + βu(co
t+1(θ)) = u(cy

t (θ
′))− ψ(lt(θ

′)) + βu(co
t+1(θ

′))

imply that cy
t (θ) > cy

t (θ
′). As a result, by convexity of ψ and concavity of u it must be that

ψl(lt(θ))

uc(c
y
t (θ))

>
ψl(lt(θ′))

uc(c
y
t (θ
′))

(73)

which is a contradiction of (72).
The proof for Θj−t ,t is the analogous, by taking lj−t ,t ≡ supθ∈Θj−t ,t

lt(θ).

A.10 Proof of proposition 2
Let us define βtµt the multiplier for period t resource constraint, and βtηj,t the multiplier for
the incentive constraint of workers of skill j = r, n. The first order conditions with respect to
consumption are

[cy
j,t] uc

(
cy

j,t

) [
Λ̃j,tωj,t + ηj,t − η−j,t

]
= µtΛj,t

[co
j,t] uc

(
co

j,t

) [
Λ̃j,t−1ωj,t−1 + ηj,t−1 − η−j,t

]
= µtΛj,t−1.

Taking the ratio of these conditions implies that

uc

(
cy

j,t

)
βuc

(
co

j,t+1

) =
µt

βµt+1

for all t ≥ 1 and j = r, n.

65



If the incentive constraint of routine workers does not bind, then ηr,t = 0. In this case,
the first order condition with respect to Xt+1 is

φtµt = βµt+1 [Fx,t+1 + φt+1(1− δ)] + βηn,t+1ψl

(
Fr,t+1

Fn,t+1
lr,t+1

)
Fr,t+1

Fn,t+1

lr,t+1

Xt+1

d log
(

Fr,t+1
Fn,t+1

)
d log(Xt+1)

µt

βµt+1
=

Fx,t+1 + φt+1(1− δ)

φt
+

ηn,t+1

φtµt+1Xt+1
ψl

(
Fr,t+1

Fn,t+1
lr,t+1

)
Fr,t+1

Fn,t+1
lr,t+1Et+1

Combining this condition with the previous result yields

uc

(
cy

j,t

)
βuc

(
co

j,t+1

) =
Fx,t+1 + φt+1(1− δ)

φt
+

ηn,t+1

φtµt+1Xt+1
ψl

(
Fr,t+1

Fn,t+1
lr,t+1

)
Fr,t+1

Fn,t+1
lr,t+1Et+1

and since ηn,t+1, µt+1 > 0 and Et+1 < 0 then as long as lr,t+1 > 0:

uc

(
cy

j,t

)
βuc

(
co

j,t+1

) <
Fx,t+1 + φt+1(1− δ)

φt
.

A.11 Normalizing dynamic model
It is useful to normalize the variables to remove the asymptotic growth trend. Let us define
cy

i,t ≡ cy
i,t/ exp

{ 1−α
α gφ(t− 1)

}
, co

i,t ≡ co
i,t/ exp

{ 1−α
α gφ(t− 1)

}
, Gt ≡ Gt/ exp

{ 1−α
α gφ(t− 1)

}
,

and Xt ≡ φtXt/ exp
{ 1−α

α gφ(t− 2)
}

.
As a result, in the optimum we need only find the allocations for agents that acquire

routine skills and for the agents that acquire non-routine skills. We can find the optimum by
maximizing welfare

ω0U0 +
∞

∑
t=1

βt

{
∑

j=n,r
Λ̃j,t(θ

∗
t )U j,t −

ˆ θ∗t

−∞
θλ(θ)ω(θ)dθ

}
(74)

where U j,t ≡ u(cy
j,t)− ψ(lj,t) + v(Gt) + β(u(co

j,t+1)) + v(Gt+1), Λ̃n,t(θ∗t ) =
´ θ∗t
−∞ λ(θ)ω(θ)dθ,

and Λ̃r,t(θ∗t ) =
´ ∞

θ∗t
λ(θ)ω(θ)dθ, subject to the constraint on θ∗t

θ∗t = Un,t −Ur,t, (75)

two intensive margin incentive compatibility constraints

u(cy
n,t) + βu(cy

n,t+1)− ψ(ln,t) ≥ u(cy
r,t) + βu(cy

r,t+1)− ψ

(
Fr,t

Fn,t
lr,t

)
, (76)

u(cy
r,t) + βu(cy

r,t+1)− ψ(lr,t) ≥ u(cy
n,t) + βu(cy

n,t+1)− ψ

(
Fn,t

Fr,t
ln,t

)
(77)
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and the resource constraint

Λ(θ∗t )c
y
n,t + [1−Λ(θ∗t )]c

y
r,t + Λ(θ∗t−1)c

o
n,t + [1−Λ(θ∗t−1)]c

o
r,t + Gt

+ Xt+1 −
(
1− δ

)
Xt = A

[
X

ε−1
ε

t +
(
φt (1−Λ(θ∗t )) lr,t

) ε−1
ε

] ε
ε−1 (1−α)

(Λ(θ∗t )ln,t)
α , (78)

for t ≥ 2, and the resource constraint at t = 1 which is similar but there is only one co
1. Here

the modified parameters are given by δ ≡ 1− (1− δ)e−gφ/α, A ≡ A
(
exp{−(1− α)/αgφ}/φ1−α

)
,

and φt = φ exp{−gφ(t− 1)− (1− α)/αgφ(t− 2)}.

A.12 Proof of lemma 3
In what follows, we derive the steady state assuming that the allocations converge, i.e. as-
sume that the allocations {cy

n,t, co
n,t, ln,t, cy

r,t, co
r,t, lr,t, θ∗t , Xt+1, Gt} → {cy

n, co
n, ln, cy

r , co
r , lr, θ∗, X, G}

are at a steady state.. We show first that if allocations converge then the multipliers on the
constraints must also converge. In the long-run steady state growth path it must be that
φt → 0 and Fr,t/Fn,t → 0.

Lemma 5. Suppose that the allocations converge to a steady state growth path with interior automa-
tion, then ηr,t → 0.

First note that since φt → 0 then the optimal labor supply by agents with routine skills is
lr,t = 0. This implies that the utility of a worker with routine skills converges to

Ur,t → u(cy
r ) + βu(co

r ) + (1 + β)v(G) ≡ Ur

while the utility from pretending to be a non-routine worker converges to −∞ since it must
be that ln > 0:

lim
t→∞

u(cy
n,t) + βu(co

n,t+1) + v(Gt) + βv(Gt+1)− ψ

(
Fn,t

Fr,t
lr,t

)
= −∞.

The first order conditions with respect to consumption when young are given by:

uc(c
y
n)[Λnωn + η∗t + ηn,t] = µtΛn

uc(c
y
r )[Λrωr − η∗t − ηn,t] = µtΛr

These imply that

Λnµt

uc(c
y
n)

+
Λrµt

uc(c
y
r )

= Λnωn + Λrωr

which requires that µt = µ is constant over time. As a result, from the consumption first
order conditions we also obtain ηn,t → ηn.

67



The first order conditions with respect to consumption when old are given by:

uc(co
n)[Λnωn + η∗t + ηn] = µΛn

uc(co
r )[Λrωr − η∗t − ηn] = µΛr

This implies that, in the steady state growth path cy
n = co

n and cy
r = co

r , and

uc(c
y
n)

Λnωn + ηn

Λn
= uc(c

y
r )

Λrωr − ηn

Λr
.

The first order conditions with respect to labor supply

lr,t = 0

ψl(ln)
[
Λjωj + ηn

]
= µαA X1−α (Λjln

)α−1 Λj

The optimality condition with respect to robots is simply given by the modified golden
rule

β[(1− α)A X−α (Λjln
)α

+ 1− δ] = 1⇔ X =

[
(1− α)A

β−1 − (1− δ)

] 1
α

Λjln.

Note that combining the first order condition with respect to labor ln and with respect to
consumption cy

n we obtain

ψl(ln)

uc(c
y
n)

= αA
(

X
Λjln

)1−α

⇔ cy
nψl(ln) = αA

[
(1− α)A

β−1 − (1− δ)

] 1−α
α

.

This is also the celebrated zero taxation on top result, which is true in this steady state growth
path due to the disappearence of general equilibrium effects when lr = 0.

A.13 Proof of proposition 3
In the steady state growth path the golden rule holds:

β[(1− α)A X−α (Λjln
)α

+ 1− δ] = 1⇔ X =

[
(1− α)A

β−1 − (1− δ)

] 1
α

Λjln.

This implies that the distortions on capital should converge to zero if the allocations converge
to the interior steady state.
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